Experimental and Theoretical Characterization of Molecular Complexes Formed between OCS and XY Molecules (X,Y=F,Cl and Br) and their Role in Photochemical Matrix Reactions

Supplementary Information

A. Lorena Picone, Carlos O. Della Védova, Helge Willner, Anthony J. Downs, and Rosana M. Romano *

Table S1. Geometric parameters for the different complexes formed between OCS and $\mathrm{ClF}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$, or BrCl , (distances in \AA, angles in degrees) calculated using the B3LYP method and the aug-cc-pVDZ for all the atoms with the exception of Br atoms in the Br_{2} complexes for which the LANL2DZ basis set was used ($\mathrm{S}=\mathrm{C}=\mathrm{O} \cdots \mathrm{Br}_{2}$ (II) were optimized with the B3LYP/6-31+G* approximation)

	r_{CO}	$\Delta \mathrm{r}_{\mathrm{CO}}{ }^{a}$	r_{CS}	$\Delta \mathrm{r}_{\mathrm{CS}}{ }^{b}$	r_{XY}	$\Delta \mathrm{r}_{\mathrm{XY}}{ }^{c}$	α^{d}	r^{e}	$d_{\mathrm{p}}{ }^{f}$
$\mathrm{OCS} \cdots \mathrm{FCl}(\mathrm{I})$	1.163	$-2 . \times 10^{-5}$	1.579	-1×10^{-4}	1.675	+0.001	76.6	3.548	-0.25
$\mathrm{OCS} \cdots \mathrm{FCl}(\mathrm{II})$	1.164	+0.001	1.579	-4×10^{-4}	1.674	$+5.10^{-4}$	180.0	3.425	-0.12
$\mathrm{OCS} \cdots \mathrm{ClF}$	1.159	-0.004	1.587	+0.008	1.698	+0.024	93.8	2.943	0.62
$\mathrm{SCO} \cdots \mathrm{FCl}$	1.163	-3×10^{-4}	1.579	$+2 \times 10^{-4}$	1.674	-7×10^{-5}	90.1	3.327	-0.31
$\mathrm{SCO} \cdots \mathrm{ClF}(\mathrm{I})$	1.166	+0.003	1.575	-0.004	1.678	+0.004	142.7	2.819	0.46
$\mathrm{SCO} \cdots \mathrm{ClF}(\mathrm{II})$	1.165	+0.002	1.575	-0.004	1.677	+0.003	180.0	2.863	0.42
$\mathrm{OCS} \cdots \mathrm{Cl}_{2}$	1.162	-0.001	1.582	+0.003	2.056	+0.010	98.0	3.354	0.21
$\mathrm{SCO} \cdots \mathrm{Cl}_{2}(\mathrm{I})$	1.164	+0.001	1.577	-0.002	2.048	+0.002	180.0	3.119	0.16
$\mathrm{SCO} \cdots \mathrm{Cl}_{2}(\mathrm{II})$	1.165	+0.002	1.577	-0.002	2.048	+0.002	147.1	3.110	0.17
$\mathrm{OCS} \cdots \mathrm{Br}_{2}$	1.159	-0.004	1.587	+0.008	2.540	+0.030	93.8	3.138	0.51
$\mathrm{SCO} \cdots \mathrm{Br}_{2}(\mathrm{I})$	1.165	+0.002	1.576	-0.003	2.513	+0.003	136.0	3.120	0.25
$\mathrm{SCO} \cdots \mathrm{Br}_{2}(\mathrm{II})$	1.168	+0.002	1.568	-0.004	2.327	+0.003	177.8	2.895	0.47
$\mathrm{OCS} \cdots \mathrm{ClBr}$	1.162	-0.001	1.582	+0.003	2.199	+0.009	93.0	3.373	0.19
$\mathrm{OCS} \cdots \mathrm{BrCl}$	1.160	-0.003	1.585	+0.006	2.209	+0.019	96.9	3.210	0.44
$\mathrm{SCO} \cdots \mathrm{ClBr}$	1.164	+0.001	1.578	-0.001	2.192	+0.002	180.0	3.263	0.02
$\mathrm{SCO} \cdots \mathrm{BrCl}$	1.165	+0.002	1.576	-0.003	2.193	+0.003	180.0	3.075	0.29

${ }^{a} \Delta \mathrm{r}_{\mathrm{CO}}=\mathrm{r}_{\mathrm{CO}}$ complex $-\mathrm{r}_{\mathrm{CO}}$ free OCS
${ }^{b} \Delta r_{C S}=r_{\text {CS complex }}-r_{\text {CS free }}$ OCS
${ }^{c} \Delta r_{X Y}=r_{X Y}-r_{X Y}$ free XY
${ }^{d}$ Intermolecular angle CE $\cdots \mathrm{X}$ ($\mathrm{E}=\mathrm{O}, \mathrm{S}$ and $\mathrm{X}=$ halogen)
${ }^{e}$ Intermolecular distance $\mathrm{E} \cdots \mathrm{X}(\mathrm{E}=\mathrm{O}$, S , or $\mathrm{X}=$ halogen $)$
${ }^{f}$ van der Waals penetration distance, d_{p}

Table S2. Theoretical IR spectra (wavenumbers in cm^{-1}) of the different complexes formed between OCS and CIF calculated using the B3LYP/aug-cc-pVDZ approximation. Predicted IR intensities are given in parentheses

OCS $\cdots \mathrm{FCl}(\mathrm{I})$	OCS $\cdots \mathrm{FCl}(\mathrm{II})$	OCS $\cdots \mathrm{ClF}$	SCO $\cdots \mathrm{FCl}$	SCO $\cdots \mathrm{ClF}(\mathrm{I})$	SCO $\cdots \mathrm{ClF}(\mathrm{II})$	assignment a
$2095.9(100.0)$	$2093.6(100.0)$	$2108.8(100.0)$	$2096.9(100.0)$	$2085.4(100.0)$	$2092.2(100.0)$	v_{CO}
$868.1(1.1)$	$868.5(0.8)$	$853.0(1.4)$	$867.6(1.14)$	$876.8(0.4)$	$876.4(0.5)$	v_{CS}
$774.7(2.6)$	$781.2(3.9)$	$705.4(24.6)$	$779.5(3.7)$	$767.8(6.6)$	$775.1(5.6)$	v_{ClF}
$509.8(0.3)$		$503.2(0.3)$	$509.8(0.3)$	$506.5(0.2)$		$\delta_{\text {oop OCS }}$
$508.0(0.4)$	$510.9(0.3)^{b}$	$508.0(0.2)$	$508.6(0.5)$	$509.4(0.2)$	$505.9(0.2)^{b}$	δ_{OCS}
$35.1(0.1)$	$30.1(0.1)^{b}$	$133.2(<0.1)$	$35.7(0.1)$	$90.7(0.1)$	$81.5(0.1)^{b}$	δ_{EXY}
$29.6(0.2)$		$117.0(<0.1)$	$21.2(0.1)$	$88.0(0.1)$		$\delta_{\mathrm{oop} \operatorname{EXY}}$
$20.0(<0.1)$	$24.9(<0.1)$	$93.1(1.0)$	$18.8(<0.1)$	$69.8(0.3)$	$57.9(0.1)$	v_{EX}
$4.3(<0.1)$	$8.3(<0.1)^{b}$	$37.3(<0.1)$	$11.9(<0.1)$	$13.4(<0.1)$	$7.4(<0.1)^{b}$	δ_{CEX}

[^0]Table S3. Theoretical IR spectra (wavenumbers in cm^{-1}) of the different complexes formed between OCS and Cl_{2} calculated using the B3LYP/aug-cc-pVDZ approximation. Predicted IR intensities are given in parentheses

$\mathrm{OCS} \cdots \mathrm{Cl}_{2}$	$\mathrm{SCO} \cdots \mathrm{Cl}_{2}(\mathrm{I})$	$\mathrm{SCO}^{\cdots} \mathrm{Cl}_{2}(\mathrm{II})$	assignment a
$2099.9(100.0)$	$2094.0(100.0)$	$2091.8(100.0)$	v_{CO}
$862.1(1.5)$	$872.3(0.8)$	$872.1(0.8)$	v_{CS}
$509.4(0.4)$	$508.2(0.2)^{b}$	$508.0(0.2)$	δ_{OCS}
$507.2(0.3)$		$508.0(0.2)$	$\delta_{\text {oop OCS }}$
$502.2(1.6)$	$523.8(0.1)$	$523.9(0.1)$	v_{ClCl}
$66.1(<0.1)$	$49.0(<0.1)^{b}$	$54.0(<0.1)$	δ_{EClCl}
$47.3(<0.1)$		$42.9(<0.1)$	$\delta_{\text {oop ECICl }}$
$44.0(0.2)$	$33.0(<0.1)$	$36.9(<0.1)$	v_{ECl}
$18.5(<0.1)$	$14.9(<0.1)$	$12.0(<0.1)$	δ_{CECl}

[^1]Table S4. Theoretical IR spectra (wavenumbers in cm^{-1}) of the different complexes formed between OCS and Br_{2} calculated using the B3LYP method and the aug-cc-pVDZ for all the atoms with the exception of Br atoms for which the LANL2DZ basis set was used ($\mathrm{S}=\mathrm{C}=\mathrm{O} \cdots \mathrm{Br}_{2}$ (II) were optimized with the B3LYP/6-31+G* approximation). Predicted IR intensities are given in parentheses

$\mathrm{OCS} \cdots \mathrm{Br}_{2}$	$\mathrm{SCO} \cdots \mathrm{Br}_{2}(\mathrm{I})$	$\mathrm{SCO}_{\mathrm{Cl}} \mathrm{Br}_{2}(\mathrm{II})$	assignment a
$2103.9(100.0)$	$2088.6(100)$	$2102.9(100.0)$	v_{CO}
$853.0(2.3)$	$873.5(0.6)$	$881.3(0.6)$	v_{CS}
$504.0(0.3)$	$508.8(0.2)$	$509.4(0.3)$	$\delta_{\text {oop OCS }}$
$504.0(0.1)$	$510.6(0.2)$	$509.2(0.3)$	δ_{OCS}
$249.6(2.1)$	$268.8(0.1)$	$323.9(0.2)$	v_{BrBr}
$84.0(1.0)$	$59.1(0.2)$	$77.5(<0.1)$	δ_{EBrBr}
$56.5(0.2)$	$37.8(<0.1)$	$75.0(<0.1)$	$\delta_{\text {oop EbrBr }}$
$42.9(<0.1)$	$32.4(<0.1)$	$56.4(0.1)$	v_{Ebr}
$25.2(<0.1)$	$11.1(<0.1)$	$28.2(<0.1)$	δ_{CEBr}

[^2]Table S5. Theoretical IR spectra (wavenumbers in cm^{-1}) of the different complexes formed between OCS and Cl_{2} calculated using the B3LYP/aug-cc-pVDZ approximation. Predicted IR intensities are given in parentheses

OCS $\cdots \mathrm{ClBr}$	OCS $\cdots \mathrm{BrCl}$	SCO $\cdots \mathrm{ClBr}$	SCO $\cdots \mathrm{BrCl}$	assignment
$2098.6(100.0)$	$2104.0(100.0)$	$2094.8(100.0)$	$2091.9(100.0)$	v_{CO}
$862.8(1.5)$	$855.7(1.9)$	$870.8(1.0)$	$875.4(0.6)$	v_{CS}
$508.8(0.2)$	$508.0(0.1)$	$508.8(0.2)^{b}$	507.0 deg.(0.2)	δ_{OCS}
$507.7(0.3)$	$504.7(0.3)$			$\delta_{\text {oop OCS }}$
$405.4(0.6)$	$395.5(3.6)$	$421.3(<0.1)$	$419.9(0.5)$	v_{BrCl}
$58.0(<0.1)$	$76.8(0.3)$	$47.6(<0.1)^{b}$	49.2 deg. (<0.1)	δ_{EXY}
$44.1(0.1)$	$61.3(0.3)$	$25.3(<0.1)$	$43.7(<0.1)$	v_{EX}
$38.5(<0.1)$	$55.7(<0.1)$			$\delta_{\text {oop EXY }}$
$19.4(<0.1)$	$27.5(<0.1)$	$16.4(<0.1)$	9.6 deg. (<0.1)	δ_{CEX}

${ }^{a} \mathrm{E}=\mathrm{O}$ or S.
${ }^{b}$ Doubly degenerate.

Figure S1. Molecular models of the trimers formed between OCS and Cl_{2} calculated with the B3LYP/6-31+G* approximation.

[^0]: ${ }^{a} \mathrm{E}=\mathrm{O}, \mathrm{S}$, or $\mathrm{X}, \mathrm{Y}=\mathrm{F}$ or Cl .
 ${ }^{b}$ Doubly degenerate.

[^1]: ${ }^{a} \mathrm{E}=\mathrm{O}$ or S .
 ${ }^{b}$ Doubly degenerate.

[^2]: ${ }^{a} \mathrm{E}=\mathrm{O}$ or S.

