Electronic Supplementary Information for

Microporous Carbon Coated Silicon Core/Shell Nanocomposite via in situ Polymerization for Advanced Li-Ion Battery Anode Material

Pengfei Gao, Jianwei Fu, Jun Yang*, Rongguan Lv, Jiulin Wang, Yanna Nuli, and Xiaozhen Tang

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University,

Shanghai, 200240, P.R. China.

E-mail: yangj723@sjtu.edu.cn

Surface Elements	Atomic Percentage (%)	Binding Energy (eV) (main components)
C1s	65.4	284.6
Ols	24.6	532.6
Si2p3	8.62	103.2
Cl2p3	0.08	202.2
N1s	0.53	399.2
P 2p3	0.69	132.6
S2p3	0.09	164.2

Table S1. Atomic composition and binding energies of the elements on the surface (at a probing depth of ca. 10 nm) of the Si@C core-shell nanocomposite by the XPS measurement.

Scheme S1 (a) Schematic illustration of the formation of Si@C nanocomposite. (b) The chemical structure of PZS polymer and the polycondensation route of co-monomers HCCP and BPS.

Scheme S2 Schematic representation of the possible capacity fading mechanisms of (a) the core/shell Si@C nanocomposite and (b) the conventional Si/C composite.

Figure S1. X-ray diffraction patterns (Cuk_{*a*}, λ =1.5418Å) of the Si@C core-shell nanocomposite, conventional Si/C composite and pure nano Si (50~100 nm).

Figure S2. XPS spectra ($Mg_{K\alpha}$, hv=1253.6 eV) of the Si@C core-shell nanocomposite.

Figure S3. Reversible capacities of the Si@C electrode at different charge/discharge rates.(solid symbols: discharge; open symbols: charge)