On the low volatility of cyclic esters: An infrared spectroscopy comparison between dimers of γ -butyrolactone and methyl propionate

Susanne Hesse and Martin A. Suhm

October 2, 2009

Supplementary Information

	$\tilde{\nu}_{\rm C=O}$	(@Ar)	$\tilde{\nu}_{\rm C-O}$	(@Ar)
А	1825	(1814)	1155	_
В	1817	(1807)	_	_
С	1846	_	_	_
D	1809	(1807)	1172	(1188)
D'	1804	(1800)	1179	_
Е	1790	(1785)	1190	(1177)

Table S1: Experimental C–O and C=O stretching wavenumbers $\tilde{\nu}_{C-O}$ and $\tilde{\nu}_{C=O}$ for 3L in cm⁻¹, without and with (@Ar) Ar embedding.

	B3LYP/	MP2/
	6-311++G(d,p)	6-311+G(d)
$\tilde{\nu}_{C=O}(M)$	1850(457)	1842(380)
$\tilde{\nu}_{C=O}(Z_{het})$	1819(0)	1823(0)
	1836(789)	1839(640)
$\tilde{\nu}_{C=O}(T_B)$	1814(14)	1816(45)
	1823(354)	1823(127)
	1828(861)	1833(735)
$\tilde{\nu}_{C-O}(M)$	1157(228)	1185(228)
$\tilde{\nu}_{C-O}(Z_{het})$	1165(0)	1186(0)
	1177(380)	1201(373)
$\tilde{\nu}_{\rm C-O}(T_{\rm B})$	1170(26)	1192(58)
	1173(58)	1196(55)
	1184(448)	1211(358)

_

Table S2: Comparison of the calculated peak positions $\tilde{\nu}_{C=O}$ and $\tilde{\nu}_{C=O}$ in cm⁻¹ and IR intensities in km mol⁻¹ (in parentheses) of the most stable cluster structures of 3L.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2009

	$\tilde{\nu}_{\mathrm{C=O}}$	$\tilde{\nu}_{\mathrm{C-O}}$
А	1767	1207
A'	_	1184
D	1762	1216
D'	_	1190
Ε	1756	1216
E'	1754	1190

Table S3: Experimental stretching wavenumbers $\tilde{\nu}_{C=O}$ and $\tilde{\nu}_{C=O}$ in cm⁻¹ for methyl propionate (2E1) expanded in helium.

Figure S1: Spectral simulations of γ -butyrolactone expansions, matching the C=O stretching transitions of the monomer to experiment and including the two most stable trimer structures.

Figure S2: Spectral simulations of γ -butyrolactone expansions, matching the C-O stretching transitions of the monomer to experiment and including the two most stable trimer structures.

Figure S3: C–H stretching region of the IR spectrum of 2E1 (a) Gas phase measured at 80 mbar at a concentration of 0.7% 2E1 in helium, scaled by $\frac{1}{400}$. (b) Jet spectrum at a stagnation pressure of 0.4 bar, 0.4% 2E1 in helium. (c) Increased concentration (0.7%). (d) ATR spectrum, scaled by $\frac{1}{100}$. (e) Transmission spectrum of liquid 2E1, scaled by $\frac{1}{100}$.