Supporting Information for

Phase Transition Kinetics in Langmuir and Spin-Coated

Polydiacetylene Films

[#]Yevgeniy Lifshitz^[a], [#]Alexander Upcher^[a], Olga Shusterman^[c], Baruch

Horovitz^[c], Amir Berman^[b] and Yuval Golan^[a]

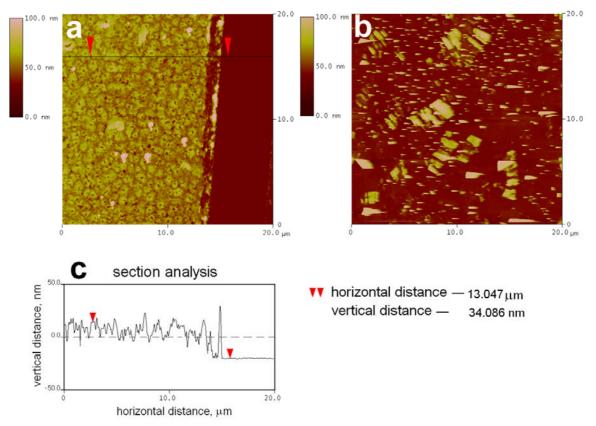
[a] Prof. Y. Golan, Y. Lifshitz, A. Upcher
 Materials Engineering Department and Ilse Katz Center of Nanoscience
 Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel)
 Email: <u>ygolan@bgu.ac.il</u>

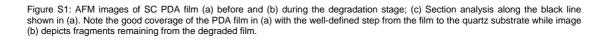
[b]Dr. A. BermanDepartment of Biotechnology and Ilse Katz Center of NanoscienceBen Gurion University of the Negev, Beer-Sheva 84105 (Israel)Email: aberman@bgu.ac.il

[c] Prof. B. Horovitz, O. Shusterman
 Department of Physics and Ilse Katz Center of Nanoscience
 Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel)

Authors who contributed equally to this work.

1. AFM images of SC PDA films





2. The kinetic model

2.1 Simple Kinetic Model

- M Monomer phase (the unpolymerized part of the film)
- P Polymer phase (the polymerized part of the film)
- D Degradation phase (the part of the film that was damaged and eventually removed from the substrate)

Two exposure–dependent kinetic constants, k_1 and k_5 (Wscm⁻²)⁻¹, were defined in order to describe the transformation rate in each stage of the reaction as a function of UV dose. The phase transitions of PDA are schematically presented by Formula (1):

(1)
$$M \xrightarrow{\kappa_1} P \xrightarrow{\kappa_5} D$$

The M \rightarrow P transition is described by k₁ and the P \rightarrow D transitions are described by k₅.

Setting the initial amount of monomer to unity, the fractions of the monomer M, polymer P and degradation stage D as a function of radiation exposure, H, (Wscm⁻²) can be calculated using Equations (2)-(4):

(2)
$$\frac{dM}{dH} = -k_1 M \to M = M_0 e^{-k_1 H}$$

(3)
$$\frac{dP}{dH} = k_1 M - k_5 P \rightarrow P = \frac{k_1}{k_5 - k_1} (e^{-k_1 H} - e^{-k_5 H})$$

(4)
$$\frac{dD}{dH} = k_5 P \rightarrow D = 1 + \frac{k_1 e^{-k_5 H} - k_5 e^{-k_1 H}}{k_5 - k_1}$$

2.2 Unidirectional Kinetic Model

The following phases are present:

M – Monomer phase (the unpolymerized part of the film with starting amount of M_0)

B – Blue phase (the polymerized part of the film in the blue phase)

R - Red phase (the polymerized part of the film in the red phase)

D – Degradation phase (the part of the film that was damaged)

Three exposure–reciprocal kinetic constants, k_1 , k_2 and k_5 (Wscm²)⁻¹, were defined in order to describe the transformation rate in each stage of the reaction as a function of UV dose. The phase transitions of PDA are schematically presented by:

(5)

$$M \xrightarrow{k_1} B \xrightarrow{k_2} R \xrightarrow{k_5} D$$

The phases evolve with flux H of UV radiation according to:

(6)
$$\frac{dM}{dH} = -k_1M$$

(7)
$$\frac{dB}{dH} = k_1M - k_2B - k_5B$$

(8)
$$\frac{dR}{dH} = k_2B - k_5R$$

(9)
$$\frac{dD}{dH} = k_5R + k_5B = k_5(B+R)$$

The solution for *M* is
(10)
$$M = e^{-k_1H}$$

with all quantities in units of the starting monomer M₀ proceed by considering the sum B+R so that

(11)
$$\frac{dP}{dH} = \frac{d(B+R)}{dH} = k_1 M - (B+R)k_5$$

(12)
$$B+R=\frac{k_1}{k_5-k_1}(e^{-k_1H}-e^{-k_5H})$$

To solve D to place Eq. (12) in to Eq. (9)

$$(13)\frac{dD}{dH} = k_5 R + k_5 B = k_5 (R+B) = k_5 \left[\frac{k_1}{k_5 - k_1} \left(e^{-k_1 H} - e^{-k_5 H}\right)\right]$$

(14)
$$D = 1 + \frac{k_1 e^{-k_s H} - k_s e^{-k_1 H}}{k_s - k_1}$$

For B we plot:

(15)
$$\frac{dB}{dH} = k_1 M - k_2 B - k_5 B = k_1 M - B(k_2 + k_5)$$

(16)
$$B = \frac{k_1}{(k_2 + k_5 - k_1)} (e^{-k_1 H} - e^{-(k_2 + k_5)H})$$

And finally to solve R:

(17)
$$\frac{dR}{dH} = k_2 B - k_5 R$$

(18)
$$R = \frac{k_1 (k_2 e^{-k_1 H} - (k_2 + k_5 - k_1) e^{-k_4 H} + (k_5 - k_1) e^{-(k_2 - k_5) H}}{(k_2 + k_5 - k_1)(k_5 - k_1)}$$

2.3 Reversible Kinetic Model

The following phases are present:

M – Monomer phase (the unpolymerized part of the film with starting amount of M_0)

- **B** Blue phase (the polymerized part of the film in the blue phase)
- I Intermediate phase (intermediate phase in the blue to red transition)
- $\boldsymbol{\textit{R}}-\text{Red}$ phase (the polymerized part of the film in the red phase)
- $\boldsymbol{D}-\text{Degradation}$ phase (the part of the film that was damaged)

Five exposure–reciprocal kinetic constants, k_1 - k_5 (Wscm²)⁻¹, were defined in order to describe the transformation rate in each stage of the reaction as a function of UV dose. The phase transitions of PDA are schematically presented by:

(19)

$$M \xrightarrow{k_1} B \xleftarrow{k_2}_{k_3} I \xrightarrow{k_4} R \xrightarrow{k_5} D$$

We derive here the solution for the kinetic equations, including the putative new phase I. The M equation is solved by $M = e^{-k_1 H}$ (normalizing the initial monomer to unity), hence the B and I equations can be written in a matrix form as

(20)
$$\frac{d}{dH} \begin{pmatrix} B \\ I \end{pmatrix} = \begin{pmatrix} k_1 e^{-k_1 H} \\ 0 \end{pmatrix} - \hat{F} \begin{pmatrix} B \\ I \end{pmatrix}$$

where

(21)
$$\hat{F} = \begin{pmatrix} k_2 + k_5 & -k_3 \\ -k_2 & k_3 + k_4 + k_5 \end{pmatrix} = a_0 \hat{I} + a_1 \hat{\sigma}_x + a_2 \hat{\sigma}_y + a_3 \hat{\sigma}_z$$

where $\hat{\sigma}_x$, $\hat{\sigma}_y$, and $\hat{\sigma}_z$ are standard Pauli matrices and \hat{I} is a unit matrix. The coefficients are:

(22)
$$a_0 = \frac{1}{2} (k_2 + k_4 + 2k_5 + k_3)$$

(23) $a_1 = -\frac{1}{2} (k_2 + k_3)$
(24) $a_2 = \frac{1}{2} (k_2 - k_3)$
(25) $a_3 = \frac{1}{2} (k_2 - k_3 - k_4)$

We rewrite the matrix in terms of a unit vector \vec{n} and a vector $\hat{\sigma}$ of the Pauli matrices:

(26)
$$\hat{F} = a_0 \hat{I} + \alpha \hat{\sigma} \cdot \vec{n}$$

(27) $\vec{n} = \frac{1}{2} (a_1, ia_2, a_3)$
(28) $\alpha = \sqrt{a_1^2 + a_3^2 - a_2^2} = \frac{1}{2} \sqrt{4k_2 k_3 + (k_2 - k_3 - k_4)^2} > 0$

Using identities of Pauli matrices we have:

(29)
$$e^{\alpha H \hat{\boldsymbol{\sigma}} \cdot \vec{n}} = \cosh(\alpha H) \hat{I} + \sinh(\alpha H) \hat{\boldsymbol{\sigma}} \cdot \vec{n}$$

The kinetic equation can be written in terms of:

$$(30) \begin{pmatrix} B \\ I \end{pmatrix} = e^{-\hat{F}H} \begin{pmatrix} \tilde{B} \\ \tilde{I} \end{pmatrix}$$

so that

(31)
$$\frac{d}{dH} \begin{pmatrix} \tilde{B} \\ \tilde{I} \end{pmatrix} = e^{\hat{F}H} \begin{pmatrix} k_1 e^{-k_1 H} \\ 0 \end{pmatrix}$$

Using the identity above for the exponent we get:

(32)
$$e^{\hat{F}H} = e^{a_0 H} \hat{I} \bigg[\cosh(\alpha H) \hat{I} + \sinh(\alpha H) (\hat{F} - a_0 \hat{I}) \frac{1}{\alpha} \bigg]$$

(33) $e^{\hat{F}H} \bigg(k_1 e^{-k_1 H} \bigg) = \bigg[e^{a_0 H} \cosh(\alpha H) \hat{I} + e^{a_0 H} \sinh(\alpha H) \frac{1}{\alpha} \bigg(\begin{matrix} a_3 & a_1 + a_2 \\ a_1 - a_2 & -a_3 \end{matrix} \bigg) \bigg] \bigg(\begin{matrix} k_1 e^{-k_1 H} \\ 0 \end{matrix} \bigg)$

Hence the kinetic equation becomes:

(34)
$$\frac{d}{dH} \left(\tilde{B}_{\tilde{I}} \right) = \begin{pmatrix} e^{a_0 H} \cosh\left(\alpha H\right) k_1 e^{-k_1 H} + \frac{1}{\alpha} e^{a_0 H} \sinh\left(\alpha H\right) a_3 k_1 e^{-k_1 H} \\ \frac{1}{\alpha} e^{a_0 H} \sinh\left(\alpha H\right) (a_1 - a_2) k_1 e^{-k_1 H} \end{pmatrix}$$

After a straightforward integration and transforming back to B and N variables we obtain

$$(35) \begin{pmatrix} B \\ I \end{pmatrix} = e^{-\hat{F}H} \begin{pmatrix} \tilde{B} \\ \tilde{I} \end{pmatrix} = e^{-a_0 H} \left[\cosh(\alpha H) \hat{I} - \frac{\sinh(\alpha H)}{\alpha} \begin{pmatrix} a_3 & a_1 + a_2 \\ a_1 - a_2 & -a_3 \end{pmatrix} \right] \begin{pmatrix} \tilde{B} \\ \tilde{I} \end{pmatrix}$$

so that finally

(36)
$$B = \frac{1}{2}k_1 \left\{ \frac{e^{-k_1H} - e^{-a_0H - \alpha H}}{a_0 - k_1 + \alpha} \left(1 + \frac{a_3}{\alpha} \right) + \frac{e^{-k_1H} - e^{-a_0H + \alpha H}}{a_0 - k_1 - \alpha} \left(1 - \frac{a_3}{\alpha} \right) \right\}$$

(37)
$$I = \frac{1}{2}k_1 \frac{a_1 - a_2}{\alpha} \left\{ \frac{e^{-k_1 H} - e^{-a_0 H - \alpha H}}{a_0 - k_1 + \alpha} - \frac{e^{-k_1 H} - e^{-a_0 H + \alpha H}}{a_0 - k_1 - \alpha} \right\}$$

The kinetic equations for the polymer content P=B+I+R are identical to those of the model Eq. (1) so that we can use the solution for P and D of that model, and for the red phase:

(38) R = P - B - I