Electronic Supplementary Information

Mg-25 Ultra-High Field Solid State NMR Spectroscopy and First Principles Calculations of Magnesium Compounds

Peter J. Pallister, ^{*a,b*} Igor I. Moudrakovski*^{*a*} and John A. Ripmeester^{*a,b*}

^a Steacie Institute for Molecular Sciences, National Research Council, Ottawa, ON, Canada ^b Department of Chemistry, Carleton University, Ottawa, ON, Canada

Figure S1 – Static Bloch Decay ²⁵Mg NMR spectrum of MgO.

Figure S2 – a) Static Hahn Echo²⁵Mg NMR spectra (experimental and simulated) of MgSO₄· $6H_2O$ b) 5kHz MAS Bloch Decay spectra (experimental and simulated) of MgSO₄· $6H_2O$.

Figure S3 – 5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of MgSO4·7H₂O.

Figure S4 – 5kHz MAS Bloch Decay 25 Mg NMR spectra (experimental and simulated) of Mg(NH₄)₂(SO₄)₂·6H₂O.

Figure S5 – 5kHz MAS Bloch Decay ²⁵Mg NMR spectrum of MgCl₂·6H₂O

Figure S6 –. a) 5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of one site in MgPO₄·8H₂O. The second site (in b)) is too broad and weak to be seen at this spinning speed. b) 12kHz MAS full Hahn Echo ²⁵Mg NMR spectra (experimental and simulated) of the second site in MgPO₄·8H₂O. Simulation of narrower signal shown in a). c) Static Hahn Echo ²⁵Mg NMR spectra (experimental and simulated) of MgPO₄·8H₂O.

Figure S7 – a)5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of MgHPO₃·3H₂O. b) Static Hahn Echo ²⁵Mg NMR spectra (experimental and simulated) of MgHPO₃·3H₂O.

Figure S8 – a) 5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of $Mg(NO_3)_2$ ·6H₂O. b) Static Hahn Echo ²⁵Mg NMR spectra (experimental and simulated) of $Mg(NO_3)_2$ ·6H₂O.

Figure S9 – a) 5kHz MAS Bloch Decay 25 Mg NMR spectra (experimental and simulated) of MgMoO₄. b) Static Hahn Echo 25 Mg NMR spectra (experimental and simulated) of MgMoO₄. *impurity.

Figure S10 – 5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of MgWO₄.

Figure S11 – 5kHz MAS Bloch Decay 25 Mg NMR spectra (experimental and simulated) of α -Mg₂V₂O₇.

Figure S12 –a) Simulation of the one site in $Mg(VO_3)_2$. b) Static full Hahn Echo²⁵Mg NMR spectrum of $Mg(VO_3)_2$. c) Static QCPMG ²⁵Mg NMR spectrum of $Mg(VO_3)_2$. d) Static full Hahn Echo²⁵Mg NMR spectrum of $Mg(VO_3)_2$ obtained in 3 pieces using varying central excitation frequencies (O1) to observe edge singularities.

Figure S13 – Mg₃(VO₄)₂. a) 18kHz MAS QCPMG ²⁵Mg spectra (experimental and simulated) of Mg₃(VO₄)₂ zoomed in on the low intensity site with the larger C_Q. b) 10kHz MAS Bloch decay ²⁵Mg spectra (experimental and simulated) of Mg₃(VO₄)₂ showing the site with the smaller C_Q. The second site is too broad and weak to be seen at 10kHz MAS Bloch Decay. *MgO; †MgO spinning sideband.

Figure S14 – 5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of Perovskite, MgTiO₃.

Figure S15 – 10kHz MAS Bloch Decay 25 Mg NMR spectra (experimental and simulated) of Spinel, MgAl₂O₄. *spinning sidebands.

Figure S16 – α -MgSO₄. a) 16kHz MAS QCPMG, Hahn echo and simulated ²⁵Mg NMR spectra of α -MgSO₄. b) Static QCPMG, Hahn echo and simulated ²⁵Mg NMR spectra of α -MgSO₄.

Figure S17 – β -MgSO₄. a) 16kHz MAS QCPMG ²⁵Mg NMR spectra (experimental and simulated) of β -MgSO₄. b) Static QCPMG ²⁵Mg NMR spectra (experimental and simulated) of β -MgSO₄.

Figure S18 – 12kHz MAS Hahn echo 25 Mg NMR spectra (experimental and simulated) of Mg(HCOO)₂·2H₂O.

Figure S19 – a) 5kHz MAS QCPMG 25 Mg NMR spectrum of Mg(Acac)₂·2H₂O. b) Simulation of a). c) Static QCPMG 25 Mg NMR spectrum of Mg(Acac)₂·2H₂O. d) Simulated of c) and e). e) Static Hahn echo 25 Mg NMR spectrum of Mg(Acac)₂·2H₂O obtained in 3 pieces using varying central excitation frequencies (O1) to observe edge singularities.pieces.

Figure S20 – 5kHz MAS Bloch Decay 25 Mg NMR spectra (experimental and simulated) of Mg(OAc)₂·4H₂O.

Figure S21 – 5kHz MAS Bloch Decay ²⁵Mg NMR spectrum of MgS. *MgO.

Figure S22 – 5kHz MAS Bloch Decay ²⁵Mg NMR spectra (experimental and simulated) of MgH₂.

Figure S23 – 5kHz MAS Bloch Decay 25 Mg NMR spectra (experimental and simulated) of MgCl₂.

Figure S24 – Static Bloch Decay ²⁵Mg NMR spectrum of Mg₂Si.