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Universality of the assembly mechanism 

It is conceivable to say that the variability of shapes described in the manuscript, including the 

fibers analyzed in the manuscript, are self-assembled through a similar mechanism (see refs. [1-

4] for more detail).  SI Fig.1 shows an example of classification of “zoo” of these shapes. 

Specifically, the synthesized shapes shown are classified by the acidity of the synthesizing bath. 

 

SI Fig.1. Variety of nanoporous shapes that were prepared by using CTACl as surfactant 

micellar template and TEOS as silica precursor. [1] 
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Besides the fundamental interest in explaining the formation mechanism, there is a lot of 

interest in the controlled assembly of nontrivial shapes because it can carry different 

functionalities, [5,6] and can be used for drug delivery, as parts of future micromachines, nano 

reactors or microcatalysis, as the matrix for new nanostructured materials. 

Calculation of Free energy of the fibers 

Assuming that the energy of freshly formed fibers, which have p6mm symmetry, is described 

by Frank Landau formula, eq. (1) of the main text,  integration over the fiber volume can be 

done analytically. SI Fig.2 shows the notations used in the derivation. 
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SI Fig. 2. Polar coordinate notation for a fiber-like liquid crystal, where n  is the vector of the 

director-field. Vertical z axis is perpendicular to the page. 

 

Because we do not observe experimentally the fiber twisted around the axis of symmetry or 

splayed fibers, the terms with K1 and K2 vanish, and the resulting energy is given by 

0
3 ( , , )K f l R d , where l  is the length of a fiber, d  is the diameter of the fiber,  R   is the 

radius of the bent fiber. 

Using cylindrical coordinate system, SI Fig.2, one can rewrite Eq. (1) as follows: 

1

0

2

0 3
 

 1 cos(2 ) 1
R d

R hex boundary

K dr dz d                          (SI1) 



 

 - 3 - 

where 0 ( 1) is the polar angle corresponding to the beginning (end) of the fiber. To take the 

above integrals, we used Mathematica (the integrand was simplified in similar to refs.[3, 6] 

manner). The used code is attached at the end of the Supplementary materials.  Finally, the free 

energy for a hexagonal fiber reads 

0 3 3   4 4 4 4 2 2                  (SI2)
2 3 4 4 2 4
l K d R R d Rd ln Rln d R ln
R d R R d d R

 

It should be noted that formula SI2  is derived for the case of the fiber that is shown in SI Fig. 2, 

the case of 0 .  Rotation of the hexagon to its maximum different configuration 

corresponding to / 6  gives only ~0.002% difference in the free energy, see SI Fig. 3. 

Therefore we will not consider the difference in the rotation angle of the fibers in our 

measurements. 

 
Angle of rotation of hexagon  

Relative change of the free energy 

SI Fig. 3.  The relative change all the free energy is shown for different angles of bending of 

the hexagonal fiber.  
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The most probable parameter 3K  with respect to the Boltzmann 

distribution 

Any parameter of a statistical distribution can be defined from the experimental data. 

Maximum likelihood method allows one to do that. In the maximum likelihood method, each 

parameter of the statistical distribution maximizes the probability to find the experimental data 

from the point of view of the particular distribution. Therefore, one has to find the extremum, 

zero derivative of the probability with respect to the parameter (for example, 3K ) of the 

statistical distribution (for example, the Boltzmann distribution). The probability of recording 

of all set of N measured data is a multiplication of individual probabilities given by the 

Boltzmann distribution: 
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 is the normalization constant.  

 Putting the derivative of equation (SI3) with respect to 3K  equal to zero, one can find 

that 3 0
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. It is worth noting here that function 
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 is experimentally 

determined. As one can see from eq. (SI2), it does not depend on 3K . 
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Mathematica code for calculation of free energy of hexagonal fiber 
 
theta=.; 
r01:=-(1/2)*d; 
z01:=0; 
r02:=-
(1/4)*d;z02:=(1/4)*d*Sqrt[3];r03:=(1/4)*d;z03:=(1/4)*d*Sqrt[3];r04:=(1/2)*d;z04:=0;r05:=(1/
4)*d;z05:=-(1/4)*d*Sqrt[3];r06:=-(1/4)*d;z06:=-(1/4)*d*Sqrt[3];r1:=R-d/2+r01*Cos[theta]-
z01*Sin[theta];z1:=r01*Sin[theta]+z01*Cos[theta];r2:=R-d/2+r02*Cos[theta]-
z02*Sin[theta];z2:=r02*Sin[theta]+z02*Cos[theta];r3:=R-d/2+r03*Cos[theta]-
z03*Sin[theta];z3:=r03*Sin[theta]+z03*Cos[theta];r4:=R-d/2+r04*Cos[theta]-
z04*Sin[theta];z4:=r04*Sin[theta]+z04*Cos[theta];r5:=R-d/2+r05*Cos[theta]-
z05*Sin[theta];z5:=r05*Sin[theta]+z05*Cos[theta];r6:=R-d/2+r06*Cos[theta]-
z06*Sin[theta];z6:=r06*Sin[theta]+z06*Cos[theta];z1max:=(z1*(r-r2)-z2*(r-r1))/(r1-
r2);z1min:=(z1*(r-r6)-z6*(r-r1))/(r1-r6);z2max:=(z2*(r-r3)-z3*(r-r2))/(r2-
r3);z2min:=z1min;z3min:=(z6*(r-r5)-z5*(r-r6))/(r6-r5);z3max:=z2max;z4max:=(z3*(r-r4)-
z4*(r-r3))/(r3-r4);z4min:=z3min;z5min:=(z5*(r-r4)-z4*(r-r5))/(r5-r4);z5max:=z4max; 
I1:=Assuming[0<theta && theta<(1/6)*Pi,NIntegrate[Integrate[(1/r),{z,z1min, 
z1max}],{r,r1,r2}]]; 
I2:=Assuming[0<theta && theta<(1/6)*Pi,NIntegrate[Integrate[(1/r),{z,z2min, 
z2max}],{r,r2,r6}]]; 
I3:=Assuming[0<theta && theta<(1/6)*Pi,NIntegrate[Integrate[(1/r),{z,z3min, 
z3max}],{r,r6,r3}]]; 
I4:=Assuming[0<theta && theta<(1/6)*Pi,NIntegrate[Integrate[(1/r),{z,z4min, 
z4max}],{r,r3,r5}]]; 
I5:=Assuming[0<theta && theta<(1/6)*Pi,NIntegrate[Integrate[(1/r),{z,z5min, 
z5max}],{r,r5,r4}]]; 
Itotal:=l*(I1+I2+I3+I4+I5)/R; 
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