Electron capture activation of the disulfide bond. The role of the asymmetry and electronegativity.

José A. Gámez, Luis Serrano-Andrés and Manuel Yáñez

Contribution from Departamento de Química, C-9. Universidad Autónoma de Madrid. Cantoblanco, ES-28049 Madrid, Spain and Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain

Supporting Information (total of 5 pages)

Eigenvalues of the SOMO

Table S1. Eigenvalues (in au) of the HF HOMOs for the most stable anionic molecules

Compound	HSSH	CH_3SSCH_3	CH_3SSNH_2	CH₃SSOH	CH₃SSF
ε HF (au)	-0.12496	-0.11135	-0.10764	-0.13029	-0.15468

Relative Energy of the two stable anions of the CH₃SSOH and CH₃SSF systems Table S2 shows that the *stretched* isomer is more stable than the *bent* one. However, this energy difference is not really large and actually for the CH₃SSF can be regarded as degenerate.

Table S2. ΔH and ΔG (in parenthesis) at 298 K between the two anionic isomers of CH₃SSOH and CH₃SSF for the process *bent* \rightarrow *stretched*. Values in kJ mol⁻¹.

	QCISD	MP2	B3LYP	BH&HLYP	CASPT2	G3
CH₃SSOH	6	15	25	6	9	10
	(13)	(21)	(27)	(10)	(16)	(15)
	4	6	11	6	-1	2
	(0)	(4)	(9)	(8)	(-3)	(-1)

Assessment of the performance of Perturbation Theory

The performance of the MP*n* approaches at describing two-center three-electron bonds was studied by Braïda and Hiberty (*J. Phys. Chem. A*, (2000), **104**, 4618). In this article, they provide a *thumb rule* to assess the good performance of perturbative treatments when describing this particular linkages: "optimized geometries, vibrational frequencies and dissociation energies can be calculated at the MP2 and MP4 levels and deemed reliable provided the UHF and MP2 population analysis yield comparable results, say 10%, as regards the sharing out of the charges among the two fragments". In the A: B molecule, with the charge of the first and second fragment being q_A and q_B respectively, the sharing out of the charge between the two fragments can be measure by defining the following parameter:

$$S = \frac{q_A^{UHF} q_A^{UMP2} + q_B^{UHF} q_B^{UMP2}}{\sqrt{(q_A^{UHF})^2 + (q_B^{UHF})^2}} \sqrt{(q_A^{UMP2})^2 + (q_B^{UMP2})^2}$$

When the charge is equally distributed between both fragments at UHF and MP2 levels (as in symmetric systems), S = 1, and the more different the sharing out of electrons is described, the lower is S. Therefore, 1-S is a good indicator of the differences between the UHF and MP2 charge densities. The following table represents q_A^{UHF} , q_A^{UHF} (notice that $q_A + q_B = 1$) and 1-S for each systems along the S-S and S-X linkages. As it can be seen, the *bent*-CH₃SSOH anion is the only one where 1-S is over 0.1 and, hence, is the only one in which MP2 is unadvisable.

Along S-S bond A=SCH3; B=SX				Along S-X bond A=SSCH3; B=X						
	CH_3SSNH_2	Stetched- CH₃SSOH	Bent- CH₃SSOH	Stretched- CH₃SSOH	Bent- CH₃SSF	Stretched- CH₃SSF				
q_A^{UHF}	0.683	0.455	0.479	0.445	0.145	0.235				
₹ <mark>₽</mark> ₩₽2 b	0.576	0.453	0.056	0.494	0.222	0.309				
1-S	0.020	0.000	0.226	0.005	0.006	0.007				

Table S3. Charge analysis of the X and Y fragments at the UHF and MP2 levels with the 6-311++g(3df,2p) basis set.

^a Natural population analysis of the UHF wave function (as fraction of the charge of the electron). ^b Natural population analysis of the UMP2 wave function (as fraction of the charge of the electron)

NBO spin density

Table S4. NBO spin density analysis based on the QCISD density of the disulphides under study. S_1 is the sulfur atom link to the carbon while S_2 is bound to the X atom.

	пссп		споссипо	bent-	stretched-	bent-	stretched-
	пээп	спэээспэ	CH333NHZ	CH3SSOH	CH3SSOH	CH3SSF	CH3SSF
S1	0.5116	0.5042	0.3944	0.0257	0.2487	0.0649	0.1648
S2	0.5116	0.5042	0.5753	0.6339	0.6064	0.7588	0.7168
С	-0.0116	-0.0169	-0.0136	0.0052	-0.0095	-0.0001	-0.0094
Х	-0.0116	-0.0169	0.0307	0.3300	0.1477	0.1694	0.1163

Cartesian Coordinates

Table S5. Cartesian coordinates (in angstroms) of the anionic derivatives of FSSF and OHSSF calculated with different methods and the 6-31++g(d,p) basis set (ANO S[4s3p2d1f]/C,N,O,F[3s2p1d]/H[2s1p] the CASSCF).

Molecule		Method								
	B3LYP					MP2				
	S	-0.0578	-0.0699	0.1202	S	-0.0535	-0.0622	0.1304		
ECCE	S	0.0699	0.0578	2.0465	S	0.0622	0.0535	2.0363		
FJJF	F	1.7062	0.0629	2.4459	F	1.6994	0.0526	2.4201		
	F	-0.0629	-1.7062	-0.2792	F	-0.0526	-1.6994	-0.2534		
	S	-0.0125	-0.0036	-0.0118	S	0.0025	-0.0243	-0.0105		
Rent-ESSE anion	S	1.7941	0.0141	-0.7080	S	1.7887	0.0227	-0.6845		
	F	2.9201	-1.3779	0.1063	F	2.8347	-1.3428	0.1396		
	F	-0.0536	0.0275	1.9544	F	0.0222	0.0045	1.8964		
	S	0.1992	-0.3386	-0.0128	S	-0.0393	0.0357	-0.0026		
Stretched-FSSF anion	S	0.3446	-0.1887	1.9476	S	0.0137	0.0513	1.9742		
	F	1.6604	0.5996	3.1159	F	1.3585	-0.0614	3.2032		

Table S5. (Cont.)										
Molecule		Method								
			QCISD				CASSCF			
	S	0.0068	0.0143	-0.0007	S	-0.8334	0.4705	0.3970		
ГССГ	S	-0.0141	-0.0073	1.9355	S	0.8334	-0.4705	0.3970		
гээг	F	1.5957	-0.0184	2.4003	F	1.7654	0.2136	-0.7051		
	F	0.0676	-1.5944	-0.4655	F	-1.7654	-0.2136	-0.7051		
	S	-0.0093	-0.0234	-0.0198	S	-0.5823	1.7195	-1.3939		
Bent- ESSE anion	S	1.7925	0.0318	-0.6958	S	0.5823	-1.7195	-1.3939		
Dent 1551 amon	F	2.8507	-1.3561	0.1411	F	-0.3158	-3.4053	1.6578		
	F	0.0142	0.0079	1.9154	F	0.3158	3.4053	1.6578		
			B3LYP				MP2			
	S	0.0163	0.0584	0.0108	S	-0.7603	1.6989	-0.2602		
	S	-0.0452	0.0404	1.9607	S	0.7608	-1.6993	-0.2605		
Stretched-FSSF anion	F	1.3981	-0.0561	3.2258	F	-0.4524	-4.9366	0.4699		
	F	-1.1463	-0.8024	-1.2542	F	0.4519	4.9370	0.4698		
	S	0.1476	-0.6822	-0.0646	S	0.1344	-0.6891	-0.0619		
	S	-0.0657	-0.5964	1.8967	S	-0.0453	-0.6052	1.8800		
OHSSF	0	1.5335	0.2004	-0.4879	0	1.5120	0.2030	-0.4756		
	Н	1.2689	1.1158	-0.6782	Н	1.2385	1.1206	-0.6433		
	F	-1.0024	0.7789	2.2075	F	-0.9576	0.7872	2.1742		
	S	0.1019	0.0024	-0.0534	S	-0.1306	-0.2608	0.0098		
	S	-0.0265	-0.0025	1.9518	S	-0.8494	-0.8620	1.7494		
Bent-OHSSF anion	0	1.5925	-0.0023	-0.5623	0	1.4071	0.0757	0.0394		
	Н	1.8664	0.0004	-2.0132	Н	2.0478	1.2882	0.6414		
	F	2.0857	0.0034	-2.9834	F	2.5151	2.0874	0.9775		
	S	0.3320	-0.7702	-0.2839	S	0.3801	-0.8428	-0.1997		
	S	-0.1878	-0.3729	1.6493	S	-0.1114	-0.3811	1.6855		
Stretched-OHSSF anion	0	1.7508	0.1800	-0.7592	0	1.7179	0.1753	-0.7170		
	Н	1.4765	1.1065	-0.6778	Н	1.3664	1.0803	-0.7007		
	F	-1.4896	0.6730	2.9451	F	-1.4710	0.7848	2.8054		

F -0.5481 -1.6780 -1.1811 F -1.1101 -0.7855 -1.2316

Table S5. (Cont.)

Molecule		Method					
			QCISD				
	S	-0.0191	-0.0073	-0.0051			
	S	0.0119	-0.0130	1.9670			
OHSSF	0	1.5968	0.0130	-0.5054			
	Н	1.8773	0.9355	-0.5994			
	F	0.0607	1.6192	2.3778			
	S	-0.0102	0.0001	0.0118			
	S	0.0097	-0.0002	2.0002			
Bent-OHSSF anion	0	1.4421	0.0002	-0.5908			
	Н	1.6424	0.0002	-2.0833			
	F	1.7991	0.0010	-3.0510			
	S	-0.0172	-0.0107	-0.0311			
	S	-0.0200	-0.0680	1.9886			
Stretched-OHSSF anion	0	1.6479	0.0190	-0.5661			
	Н	2.0231	0.8409	-0.2197			
	F	-0.1408	1.1866	3.7466			