Supporting Information for

Infrared Multiple Photon Dissociation Spectroscopy of Cationized Methionine: Effects of Alkali-Metal Cation Size on Gas-Phase Conformation

By D. R. Carl, T. E. Cooper, J. Oomens, J. D. Steill, and P. B. Armentrout

A description of the structures of Met and $M^+(Met)$ for $M^+ = Li^+$, Na^+ , K^+ , Rb^+ , and Cs^+ . Two figures (S1a and S1b) depicting the 298 K Gibbs free energies calculated at the R/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) (M⁺ = Li⁺, Na⁺, K⁺) and **R**/HW*/6-311+G(2d,2p)// B3LYP/HW*6-311+G(d,p) ($M^+ = Rb^+$ and Cs^+) levels, where $\mathbf{R} = B3LYP$ (S1a) and B3P86 (S1b) for eight distinct conformations. One table (S1) providing 0 K relative energies calculated at the $\mathbf{R}/\mathrm{HW}^{*}/6-311+G(2d,2p)$ and $\mathbf{R}/\mathrm{Def}^{2}\mathrm{TZVP}$ levels of theory, where $\mathbf{R} = \mathrm{B3LYP}$, $\mathrm{B3P86}$, and MP2(full), for eight conformations of Rb⁺(Met) and Cs⁺(Met). Two tables (S2 and S3) providing geometric parameters (bond lengths, bond angles, and dihedral angles) for low-energy structures of M⁺(Met). Vibrational frequencies and IR intensities are calculated for M⁺(Met) at the B3LYP/6-311+G(d,p) ($M^+ = Li^+$, Na^+ , K^+) and B3LYP/HW*/6-311+G(d,p) ($M^+ = Rb^+$ and Cs^+) levels. Four tables (S4–S7) providing the vibrational frequencies and IR intensities for the [N,CO,S] tgcgt, tgcgg, tgggt, and tgggg conformers for all M⁺(Met). Two tables (S8 and S10) providing vibrational frequencies and IR intensties for the [CO₂⁻] ctggg and [COOH] ctggg conformers for all M⁺(Met). Two tables (S9 and S11) providing vibrational frequencies and IR intensities for the $[CO_2^-]$ cgtgg and ctggt and [COOH] cgtgg and ctggt conformers for K⁺(Met) to Cs⁺(Met). One table (S12) providing vibrational frequencies and IR intensities for the [COOH,S] cgggg conformers for Na⁺(Met) to Cs⁺(Met). One table (S13) providing vibrational frequencies and IR intensities for the [COOH,S] cgggt and cgcgg conformers for K⁺(Met) to Cs⁺(Met). Two tables (S14 and S15) providing the vibrational frequencies and IR intensities for four [N,CO,S] and four [N,OH,S] conformers of H^+ (Met) calculated at the B3LYP/6-311+G(d,p) level.

Theoretical Results – Structures. The lowest energy conformations found for neutral methionine have been described in detail elsewhere and are of two types. The N1 conformations have side-chain orientations of tgttg and tgtgt with NH···OC hydrogen bonds (2.564 and 2.521 Å, respectively) and OH···OC hydrogen bonds (2.302 and 2.298 Å, respectively). The N2 type conformation has a COH···N hydrogen bond (1.883 Å) with the lowest energy ctggt side-chain orientation having an additional NH···S hydrogen bond (2.479 Å). Because the methionine side chain is quite flexible, four additional structures for neutral methionine are within 10 kJ/mol of these lowest energy structures. An additional N1 type conformer with a tgttt side-chain orientation is identical to the tgttg orientation except that the side chain is further extended. The N2 cttgt conformer maintains both COH···N and NH···S hydrogen bonds but is a full angstrom longer than the ctggt structure. The side-chain orientations of two additional N2 conformers, ctttg and cgggg, do not allow the NH···S hydrogen bond to form such that only the COH···N hydrogen bond is present.

The low-lying structures found for all $M^+(Met)$ complexes are illustrated by those for $Rb^+(Met)$ in Figure 1 of the main text. Several important geometric parameters for the $M^+(Met)$ complexes are provided in Tables S2 and S3. For completeness, Table S2 also includes geometric parameters calculated at the B3LYP/Def2TZVP level of theory for $Rb^+(Met)$ and $Cs^+(Met)$. In general compared to B3LYP/HW*/6-311+G(d,p) geometries, metal ligand bond lengths are shorter by 0.07 – 0.21 Å and 0.16 – 0.38 Å for Rb^+ and Cs^+ , respectively, and bond angles are within 5°. In the comparisons below, B3LYP/HW*/6-311+G(d,p) calculations are used throughout.

For Li⁺(Met) and Na⁺(Met), the ground state structure is the tridentate charge-solvated [N,CO,S] conformation with a tgcgt orientation. This orientation remains the lowest energy [N,CO,S] conformation for K⁺(Met) and Rb⁺(Met) but the CCCC dihedral angle crosses the arbitrary 50° cis-gauche limit to become a tgggt orientation for K⁺(Met) through Cs⁺(Met), Table S3. For convenience, we will retain the tgcgt designation for this orientation for all metal cations in order to distinguish it from an alternative [N,CO,S]tgggt orientation. DFT calculations for

Cs⁺(Met) predict that the tgcgt orientation is the lowest energy [N,CO,S] conformer, whereas MP2(full) energies calculate the tgggg orientation as the lowest [N,CO,S] conformer, Table 1. [N,CO,S] tgcgg and tgggt orientations were also identified as unique structures. Dihedral parameters for the four [N,CO,S] conformers are shown in Table S3. [N,CO,S] tgcgg, tgggt, and tgggg conformers for the Li⁺(Met), Na⁺(Met), and K⁺(Met) complexes are higher in energy by 5 - 12, 7 - 12, and 5 - 10 kJ/mol, respectively, compared to the [N,CO,S] tgcgt conformers, Table 1. The differences drop to 1 - 7 kJ/mol for Rb⁺(Met), and all four orientations are within 4 kJ/mol of one another for Cs⁺(Met).

In all [N,CO,S] conformers, a single hydrogen bond between the carboxylic hydrogen atom and carbonyl oxygen atom is present, Figure 2. For the tgcgt orientation, the M⁺-OC, M⁺-N, and M⁺-S distances increase from 1.938 to 3.106 Å, 2.068 to 3.445 Å, and 2.439 to 3.781 Å, respectively, as the size of the metal cation increases from Li⁺ to Cs⁺, Table S2. Similar differences in these bond distances are found for the tgcgg, tgggt, and tgggg orientations. These changes directly reflect the increase in the ionic radius of the metal cation (0.70 Å for Li⁺, 0.98 Å for Na⁺, 1.33 Å for K⁺, 1.49 Å for Rb⁺, and 1.69 Å for Cs⁺)¹ coupled with the resultant decreasing charge density, which weakens the electrostatic interaction with methionine. The $\angle NM^+O$, $\angle NM^+S$, and $\angle OM^+S$ angles decrease as the metal cation becomes heavier, consistent with an elongation of the M⁺-OC, M⁺-N, and M⁺-S distances, Table S2. Because of the small M^+ -OC, M^+ -N, and M^+ -S distances in Li^+ (Met) and Na^+ (Met), the position of the terminal methyl group in the [N.CO,S] orientations is an important factor in establishing the relative energies, whereas in the larger $M^+(Met)$ systems ($M^+ = K^+$, Rb^+ , and Cs^+), the methyl group position isn't as critical because these bond distances are larger. The terminal methyl group points away from the metal binding site in all orientations except for the tgggg orientation, such that the methyl group begins to interact repulsively with the carboxylic acid moiety.

For the zwitterionic $[CO_2^-]$ conformer, a ctggg orientation is the lowest energy structure, Table 1. The protonated amine group forms hydrogen bonds with the sulfur of the amino acid side chain and the carboxylate oxygen atom, Figure 2. The NH···S hydrogen bond increases

from 2.209 to 2.234 Å, whereas the NH…OC interaction decreases from 1.816 to 1.758 Å for $K^{+}(Met)$ to $Cs^{+}(Met)$. The M⁺-O bond lengths are similar to each other, but the oxygen interacting with the NH_3^+ group is longer by 0.02 – 0.05 Å, Table S2. These bond lengths increase as the metal cation gets heavier, in proportion to the cation sizes noted above, reflecting the weaker metal cation binding as the metal gets larger. The [COOH] conformation is the charge-solvated analogue of the zwitterionic $[CO_2^-]$, with the only difference being the position of the proton shared between the amine nitrogen atom and the carboxylate group, Figure 2. As for [CO₂⁻], all levels of theory for the [COOH] conformation prefer a ctggg side chain orientation. The neutral NH₂ group now hydrogen bonds to the sulfur atom of the amino acid chain and the acidic hydrogen atom of the carboxylic acid. Compared to $[CO_2^-]$ conformers, the M⁺-OC bond distances are similar (0.01 – 0.04 Å longer), whereas the M⁺-OH bond distances increase substantially (0.10 - 0.18 Å longer). From K⁺(Met) to Cs⁺(Met), the OH…N and NH…S hydrogen bonds increase by 0.033 and 0.025 Å, respectively. Alternate cgtgg and ctggt orientations were also found for $[CO_2^-]$ and [COOH] conformers for all M⁺. These structures are nearly isoenergetic with the ctggg orientations for DFT energies regardless of the cation size, whereas MP2(full) results predict slightly larger energetic differences between the structures, Table 1. For all metal cations, the geometrical parameters of the amino acid side chain are similar for the analogous [CO₂⁻] and [COOH] conformers, Table S3.

Another low-energy structure for the K⁺(Met), Rb⁺(Met), and Cs⁺(Met) complexes is the charge-solvated, tridentate [COOH,S] conformation, in which the metal ion interacts with the sulfur of the amino acid side chain in addition to both oxygen atoms of the carboxylic acid moiety, Figure 2. For K⁺(Met) and Rb⁺(Met), the lowest energy [COOH,S] conformer is a cgggt orientation for DFT calculations, Table 1, whereas a cgggg orientation is preferred at the MP2(full) level of theory. The cgggt orientation in K⁺(Met) and Rb⁺(Met) progresses into a ctggt orientation for Cs⁺(Met), which is the lowest energy [COOH,S] orientation at all levels of theory, but only because the OCCC dihedral angle has increased over the arbitrary 135° gauche-trans limit, Table S2. For consistency, this set of structures will be identified as the

[COOH,S]cgggt orientation for Cs⁺(Met) as well as the lighter metals. The ligand structure changes very little with metal cations for the cgggg orientation, Table S2, whereas the OCCC, CCCC, and CCCS dihedral angles in the cgggt orientations change appreciably from K⁺(Met) to Cs⁺(Met), Table S2. The cgggg and cgggt orientations differ primarily in the position of the terminal methyl group, which is located much closer to the carboxylic acid moiety in the cgggg orientation than in the cgggt orientation. Table S2 shows that the cgggg conformer allows shorter M⁺-OH bonds (by 0.10 - 0.20 Å) by compensating with longer M⁺-OC bonds (by 0.03 - 0.06 Å) and variable M⁺-S bond lengths (longer for K⁺ by 0.03 Å, comparable for Rb⁺, and shorter for Cs⁺ by 0.20 Å) with respect to the [COOH,S] cgggt conformer.

Four additional high energy conformations were identified for $M^+(Met)$. If the carboxylic acid moiety in the [N,CO,S] conformation is rotated by 180°, the result is a charge-solvated, tridentate [N,OH,S] conformation. This structure was not included in the previous theoretical results for the CID study of $M^+(Met)$ with $M^+ = Li^+$, Na⁺, and K⁺, because it is always higher in energy than the [N,CO,S] conformer and could not correspond to the ground state. Only the lowest energy [N,OH,S] orientations, either tgggt or ttggt, are presented in Tables 1 and 3, and are analogous to the tgcgt and tgggg orientations of the [N,CO,S] conformer. Compared to the cation-oxygen interaction of the [N,CO,S] conformers, the metal cation interaction with the hydroxyl oxygen atom of the [N,OH,S] conformers is weaker; therefore, the M⁺-O distances are longer in the latter and compensated by shorter M⁺-N and M⁺-S distances.

If the metal cation interaction with the side chain is lost from [N,CO,S], the chargesolvated bidentate [N,CO] conformation is obtained, and this has a tgtgt side-chain orientation. The loss of the M⁺-S interaction is partially compensated by allowing the amine group to form a hydrogen bond with the side-chain sulfur atom, Figure 2. As expected, the M⁺-O and M⁺-N distances in the bidentate [N,CO] conformation are shorter than those in the tridentate [N,CO,S] conformation. An additional high energy conformer is charge-solvated and binds in a bidentate fashion to the carbonyl oxygen atom of the backbone and the sulfur atom of the side chain, [CO,S]. The side chain has a ctggg orientation for Li⁺(Met) to Rb⁺(Met) and a ctgtg orientation

for $Cs^+(Met)$, as the CCCS dihedral progresses smoothly from 106° to 117° to 121° to 130° to 140° from Li⁺(Met) to $Cs^+(Met)$. Because the carboxylic hydrogen is trans with respect to the carbonyl oxygen atom, the hydroxyl group hydrogen bonds to the nitrogen atom of the amine group. Because the metal cation is no longer constrained to bind to the other oxygen, the M⁺-OC bond lengths are the shortest of any conformation, Table S2.

The final high-energy conformations are the $[CO_2^-,S]$ cgggg conformations, tridentate zwitterionic analogues of charge-solvated [COOH,S] cgggg conformations. Minimal comparisons can be made between these zwitterionic and charge-solvated conformers for Li⁺(Met) as the [COOH,S] cgggg structure collapses to a [CO,S] structure and the $[CO_2^-,S]$ cgggg conformer for Cs⁺(Met) collapses to the a high energy $[CO_2^-]$ conformer with CCCS and CCSC dihedral angles that position the terminal methyl group closer to the metal binding site. For M⁺ = Na⁺, K⁺, and Rb⁺, the zwitterionic $[CO_2^-,S]$ cgggg structure has shorter M⁺-OC (by 0.01 – 0.03 Å) and M⁺-O (by 0.14 – 0.15 Å) distances and longer M⁺-S distances than the analogous [COOH,S] conformations.

Finally, the protonated methionine complex, $H^+(Met)$, has a set of low energy structures, [N,CO,S], in which the protonated amine group hydrogen bonds to both the carbonyl oxygen atom (NH···OC) and the sulfur atom of the amino acid side chain (NH···S). A third hydrogen bond is also present between the hydroxyl group and the carbonyl oxygen atom. Four structures having this bonding motif vary in the side-chain orientations: tgtgg, tgtgt, tgggg, and tgggt. The NH···OC hydrogen bond is longer by 0.085 Å for the tgtgg (tggt) structures compared to the tgggg (tgggt) orientations. A second set of structures were identified with the carboxylic acid group rotated by ~ 180° such that a hydrogen bond forms between the hydrogen atom on the amine group and hydroxyl group oxygen atom, [N,OH,S]. The [N,OH,S] tgtgg, ttggg, tgtgt, and ttggt orientations are direct analogues of the [N,CO,S] tgtgg, tggg, tgtgt, and tgggt orientations.

One final observation regarding the structures in which the metal cation binds to the sulfur side chain is the \angle M-C-S-C dihedral angle. For most of the [N,CO,S] conformers, these dihedral angles are near 120°, indicating that the metal ion prefers to bind in a tetrahedral-like

geometry as opposed to a planar geometry that would be favored by aligning with the local dipole moment of the sulfur group. As the metal ion gets larger, these dihedral angles do increase for the tgcgg and tgggg orientations, reaching 171° and 153° respectively. For the [COOH,S] conformers, the tetrahedral-like geometry is also preferred for the metal cations with the cgggg orientation; however, for the cgggt and cgcgg orientations, these dihedral angles also increase as the metal cation size increases, reaching 167° and 151°, respectively. Notably such tetrahedral-like side-chain geometries differ from those calculated for oxygen side-chains (serine and threonine) which favor a much more planar dihedral angle,^{2,3} even though the longer side-chain length of Met allows greater flexibility in its coordination geometry.

(1) Wilson, R. G.; Brewer, G. R. Ion Beams with Applications to Ion Implantation; Wiley: New York, 1973.

(2) Armentrout, P. B.; Rodgers, M. T.; Oomens, J.; Steill, J. D. J. Phys. Chem. A 2008, 112, 2248.

(3) Rodgers, M. T.; Armentrout, P. B.; Oomens, J.; Steill, J. D. J. Phys. Chem. A 2008, 112, 2258.

Figure Caption

Figure S1. 298 K Gibbs free energies (kJ/mol) calculated at the B3LYP (a) and B3P86 (b) levels of theory (from Table 1) of eight conformations of $M^+(Met)$ complexes as a function of the alkali-metal cation relative to the energy of the [N,CO,S] conformer.

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010

Figure S1

TABLE S1: Relative energies at 0 K (kJ/mol) of low-lying conformations of cationized
Met calculated using different basis sets ^a

Complex	Structure	HW*/6-311+G(2d,2p)	Def2TZVP
Rb ⁺ (Met)	[CO ₂ ⁻]ctggg	0.0 , 0.0 , 1.7	0.0 , 0.0 , 0.2
	[N,CO,S]tgggt	5.0, 10.0, 0.9	2.6, 7.4, 0.0
	[COOH]ctggg	6.4, 7.5, 8.4	7.4, 8.2, 9.8
	[COOH,S]cgggt	6.6, 9.1, 3.9	6.2, 8.3, 3.0
	[COOH,S]cgggg	7.2, 9.4, 1.4	7.3, 9.1, 1.9
	[N,CO,S]tgggg	10.1, 13.9, 0.0	8.3, 12.0, 0.4
	[N,CO]tgtgt	12.5, 17.4, 13.3	11.2, 16.0, 14.2
	[CO,S]ctggg	13.0, 16.5, 16.4	12.3, 15.5, 16.3
	[CO ₂ ⁻ ,S]cgggg	28.7, 29.1, 23.7	27.4, 27.4, 19.3
	[N,OH,S]ttggg	34.0, 37.9, 19.9	33.1, 37.0, 21.9
	[N,OH,S]tgggt	35.2, 41.2, 28.6	33.5, 39.3, 29.3
Cs ⁺ (Met)	[CO ₂ ⁻]ctggg	0.0 , 0.0 , 3.2	0.0 , 0.0 , 0.4
	[COOH]ctggg	1.5, 3.1, 4.7	4.6, 6.2, 7.1
	[COOH,S]ctggt	2.5, 5.0, 1.2	4.4, 6.6, 0.6
	[COOH,S]cgggg	4.2, 6.7, 0.4	6.3, 8.5, 0.5
	[N,CO,S]tgggt	7.2, 12.2, 3.7	5.4, 9.9, 1.4
	[N,CO,S]tgggg	9.3, 13.2, 0.0	9.3, 13.1, 0.0
	[CO,S]ctgtg	9.4, 13.1, 13.3	11.4, 15.1, 14.0
	[N,CO]tgtgt	11.0, 16.2, 12.5	11.1, 16.1, 13.6
	[CO ₂ ⁻ ,S]cgggg	30.1, 31.1, 27.7	29.0, 29.7, 21.0
	[N,OH,S]ttggg	32.9, 36.7, 19.8	33.6, 37.3, 20.7
	[N,OH,S]tgggt	36.0, 41.7, 30.8	35.2, 40.6, 29.9

^{*a*} Values listed are calculated at the B3LYP, B3P86, and MP2(full) levels of theory using the indicated basis set. For the Def2TZVP basis set on all elements, geometries, and zero-point energies were calculated at the B3LYP/Def2TZVP level of theory.

TABLE S2: Geometric parameters for low-energy structures of M⁺(Met)^a

	$r(M^+-O)$ (Å)					$r(M^+-X)$ (Å)					$r(M^+-S)(A)$				
orientation	Li	Na	K	Rb	Cs	Li	Na	K	Rb	Cs	Li	Na	K	Rb	Cs
[N,CO,S] ^b	1.938	2.293	2.631	2.888	3.106	2.068	2.462	2.885	3.178	3.445	2.439	2.802	3.229	3.516	3.781
[N,CO,S] ^b	1.941	2.299	2.634	2.825 2.887	2.991 3.084	2.054	2.443	2.858	3.110 <i>3.149</i>	3.301 <i>3.419</i>	2.451	2.811	3.254	3.433 3.549	3.023 3.934
tgcgg				2.828	2.981				3.088	3.264				3.454	3.694
$[N,CO,S]^b$	1.926	2.279	2.612	2.859	3.079	2.090	2.485	2.933	3.249	3.521	2.464	2.826	3.265	3.548	3.806
tgggt				2.794	2.957				3.185	3.366				3.467	3.661
$[N,CO,S]^{b}$	1.923	2.275	2.608	2.862	3.082	2.085	2.483	2.941	3.255	3.550	2.448	2.835	3.273	3.566	3.795
tgggg				2.800	2.959				3.191	3.396				3.473	3.642
$[N,OH,S]^{b}$	1.974	2.349	2.750	3.021	3.287	2.027	2.413	2.815	3.103	3.358	2.419	2.770	3.181	3.468	3.720
tgggt				2.989	3.186				3.040	3.219				3.381	3.563
$[N,OH,S]^{b}$	1.975	2.362	2.760	3.044	3.328	2.040	2.429	2.851	3.142	3.412	2.447	2.811	3.219	3.476	3.697
ttggg				2.998	3.209				3.082	3.274				3.339	3.547
$[N,CO]^{b}$	1.871	2.250	2.608	2.869	3.092	2.022	2.411	2.839	3.130	3.385					
tgtgt				2.806	2.972				3.061	3.235					
$[\mathrm{CO}_2^-]^c$	1.927	2.286	2.620	2.886	3.111	1.950	2.308	2.672	2.936	3.154					
ctggg				2.811	2.951				2.871	3.039					
$[\mathrm{CO}_2^-]^c$	1.923	2.280	2.618	2.882	3.085	1.952	2.314	2.673	2.943	3.189					
ctggt				2.801	2.936				2.881	3.060					
$[CO_2^-]^c$	1.920	2.277	2.611	2.872	3.090	1.957	2.314	2.682	2.953	3.168					
cgtgg				2.795	2.937				2.888	3.049					
$[COOH]^d$	1.919	2.292	2.648	2.906	3.149	2.064	2.410	2.826	3.108	3.313					
ctggg				2.830	2.985				3.064	3.273					
$[COOH]^d$	1.906	2.290	2.639	2.905	3.129	2.080	2.411	2.832	3.111	3.367					
ctggt				2.825	2.972				3.074	3.315					
$[COOH]^d$	1.913	2.282	2.630	2.906	3.124	2.076	2.431	2.848	3.116	3.349					
cgtgg				2.823	2.968				3.067	3.317					
$[COOH,S]^d$	е	2.316	2.655	2.912	3.130	е	2.476	2.822	3.055	3.283	е	2.921	3.433	3.796	4.125
cgggg				2.834	2.981				3.026	3.241				3.657	3.864
$[CO_2,S]^c$	1.964	2.303	2.629	2.891	f	1.989	2.331	2.680	2.921	f	2.580	3.063	3.529	4.121	f
cgggg				2.814	f				2.864	f				3.908	f
$[COOH,S]^d$	е	2.266	2.628	2.877	3.098	е	2.715	2.929	3.207	3.451	е	2.880	3.366	3.672	3.919
cgcgg				2.802	2.961				3.253	3.415				3.547	3.727
$[CO_2,S]^c$	1.949	2.292	2.608	2.860	3.067	2.018	2.364	2.722	3.000	3.239	2.580	3.030	3.530	3.855	4.090
cgcgg				2.785	2.920				2.941	3.131				3.729	3.902

[COOH,S] ^{d,}	е	2.287	2.620	2.872 2 799	3.066 2 915	е	2.574	2.918	3.151 3.117	3.475 3.480	е	2.902	3.401	3.806 3.641	4.326 3 944
$[CO_2^{-},S]^c$	1.949	2.290	2.604	2.857 2.783	2.713 f f	2.014	2.361	2.713	2.964 2.901	f f	2.583	3.029	3.568	4.179 4.010	3.744 f f
[CO,S] ctggg	1.780	2.156	2.505	2.765 2.703	2.994 2.875				2.701		2.429	2.835	3.337	3.681 3.561	3.991 3.768
			∠XMO (°)				∠XMS (°	°)				∠OMS (°)	
conformer orientation	Li	Na	K	Rb	Cs	Li	Na	K	Rb	Cs	Li	Na	K	Rb	Cs
[N,CO,S] ^b	84.6	71.1	60.3	54.5	50.0	90.1	76.3	64.1	58.1	53.0	109.9	99.1	86.2	80.0	74.7
tgggt $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n$	07 7	71.2	60.6	55.7 54.0	52.2	08.5	840	70.2	59.2	55.6	102.5	04 2	82.0	81.1	76.8
[N,CO,S]	01.1	/1.2	00.0	54.9 56 1	53.1	90.5	049	70.2	64.6	53.0 58 5	105.5	94.2	02.9	77.5	71.5
$[N.CO.S]^{b}$	84.0	70.2	59.0	53.1	48.7	98.6	86.3	73.9	67.4	62.7	96.8	84.1	72.2	65.7	61.3
tgggt	0110	,	09.0	54.3	50.9	2010	0010	10.5	68.7	65.1	2010	01	/=.=	67.2	63.9
$[N,CO,S]^{b}$	84.7	70.5	58.6	52.6	48.0	96.7	85.0	72.8	66.8	62.1	106.1	91.4	77.5	70.6	64.8
tgggg				53.7	50.3				68.2	64.4				72.1	68.0
$[N,OH,S]^b$	82.6	69.2	58.2	52.7	47.9	92.8	79.4	66.8	60.1	55.1	110.5	99.6	87.4	80.9	76.7
tgggt				53.3	49.8				61.8	57.6				82.8	79.1
[N,OH,S] ^b	81.1	67.5	56.8	51.3	46.8	98.7	86.6	74.2	<i>68.3</i>	63.3	106.0	92.4	78.3	71.7	66.1
ttggg				52.2	48.7				69.8	65.8				73.6	69.0
[N,CO] ^{<i>b</i>}	87.8	73.0	61.3	55.4	51.0										
tgtgt				56.7	53.3										
$[\mathrm{CO}_2^-]^c$	69.8	58.3	50.2	45.5	42.4										
ctggg				46.6	44.1										
$[\mathrm{CO}_2^-]^c$	69.9	58.3	50.2	45.5	42.1										
ctggt				46.6	44.0										
$[\mathrm{CO}_2^{-}]^c$	69.9	58.4	50.3	45.6	42.2										
cgtgg				46.6											
$[COOH]^{a}$	66.9	56.1	47.6	43.2	40.2										
ctggg				44.0	41.3										
$[COOH]^{a}$	66.9	56.1	47.7	43.2	39.8										
ctggt				44.0	40.9										
[COOH]"	66.8	55.9	47.6	43.2	40.0										
cgtgg	0		1 	44.1	40.9	n	00.0	<i></i>	<i>(</i> , , , , , , , , , ,		0				
[COOH,S] ^a	c	54.9	47.7	43.7	40.5	c	80.9	69.6	62.8	57.8	c	83.2	70.5	63.8	58.3
$cgggg$ $[CO_2^-,S]^c$	68.7	58.0	50.2	44.4 45.7	41.6 <i>f</i>	93.8	79.8	69.4	64.5 60.9	61.0 f	93.8	78.6	68.4	66.6 57.2	62.6 f

cgggg				46.8	f				63.8	f				60.9	f
$[COOH,S]^d$	е	51.8	46.7	42.4	39.2	е	86.2	75.8	69.2	64.4	е	76.5	64.3	58.4	54.3
cgcgg				42.2	39.9				70.7	67.0				60.6	57.2
$[\mathrm{CO}_2^{-},\mathrm{S}]^c$	68.5	57.7	50.0	45.2	41.9	100.2	86.7	75.7	69.7	65.8	86.4	72.1	60.9	54.9	51.5
cgcgg				46.3	43.6				72.0	68.6				57.2	54.3
[COOH,S] ^{d,}	е	53.8	46.9	43.0	39.1	е	82.9	71.3	64.0	56.4	е	80.2	67.5	59.6	51.3
cgggt				43.7	39.4				66.5	60.3				62.5	56.4
$[\mathrm{CO}_2^-,\mathrm{S}]^c$	68.5	57.8	50.1	45.6	f	95.9	82.6	70.9	61.0	f	89.1	75.5	63.9	53.8	f
cgggt				46.6	f				63.4	f				56.2	f
[CO,S]											105.3	90.4	76.5	71.2	68.6
ctggg														73.2	70.1

^{*a*} Values calculated at the B3LYP/6-311+G(d,p) (roman), B3LYP/HW*/6-311+G(d,p) (italics), or B3LYP/Def2TZVP (bold) levels of theory for the lowest energy structure of a given conformer of each metal. The O atom for the M⁺-O bond distances and the XMO and OMS bond angles refers to the carbonyl oxygen atom, except for [N,OH,S] conformers. ^{*b*} X = amino nitrogen. ^{*c*} X = carboxylate oxygen atom bound to NH₃⁺ by a hydrogen bond. ^{*d*} X = hydroxyl oxygen atom. ^{*e*} The [COOH,S] conformer for Li⁺(Met) collapses to a [CO,S] conformer. ^{*f*} [CO₂⁻,S]cgg.gg conformer for Cs⁺(Met) converges to a [CO₂⁻] conformer.

Table S3: Side-chain dihedral angles (°) for the [N,CO,S], $[CO_2^-]$, and [COOH] conformers for Li⁺(Met) to Cs⁺(Met) and the [COOH,S] conformers for Na⁺(Met) to Cs⁺(Met)^{*a*}

[00011,0]		. (•)				
Complex	Conformer	Orientation	\angle (HOCC)	\angle (OCCC)	\angle (CCCC)	\angle (CCCS)	\angle (CCSC)
Li ⁺ (Met)	[N,CO,S]	tgcgt	177.9	-81.6	-45.6	-63.3	-179.0
Na ⁺ (Met)		tgcgt	178.1	-77.8	-49.6	-67.4	-167.9
K ⁺ (Met)		tgcgt	178.6	-73.5	-52.0	-67.9	-159.8
Rb ⁺ (Met)		tgcgt	178.9	-71.6	-53.6	-69.8	-154.3
Cs ⁺ (Met)		tgcgt	179.2	-70.2	-55.8	-70.0	-148.0
Li ⁺ (Met)	[N,CO,S]	tgcgg	177.9	-80.8	-40.1	-59.2	-68.6
Na ⁺ (Met)		tgcgg	178.4	-76.4	-41.0	-65.3	-66.7
K ⁺ (Met)		tgcgg	178.7	-72.5	-44.4	-67.3	-69.2
Rb ⁺ (Met)		tgcgg	178.7	-71.9	-47.8	-70.2	-75.5
Cs ⁺ (Met)		tgcgg	177.9	-74.4	-56.7	-70.3	-92.0
Li ⁺ (Met)	[N,CO,S]	tgggt	178.2	-75.1	-90.2	59.0	180.0
Na ⁺ (Met)		tgggt	179.5	-68.2	-86.1	61.4	167.9
K ⁺ (Met)		tgggt	-179.7	-63.7	-82.4	62.9	159.0
Rb ⁺ (Met)		tgggt	-179.6	-62.3	-80.5	63.6	151.1
Cs ⁺ (Met)		tgggt	-179.3	-60.6	-79.3	64.9	148.1
Li ⁺ (Met)	[N,CO,S]	tgggg	179.3	-76.8	-95.6	55.3	67.0
Na ⁺ (Met)		tgggg	-177.3	-64.3	-89.2	57.4	63.8
K ⁺ (Met)		tgggg	-174.3	-53.4	-81.4	58.4	69.4
Rb ⁺ (Met)		tgggg	-173.8	-51.6	-78.9	60.2	70.2

	tgggg	-173.9	-51.5	-77.5	61.5	71.8
[CO ₂ ⁻]	ctggg	-3.5	137.6	-57.4	-65.8	-77.4
	ctggg	-3.9	137.2	-57.6	-67.0	-76.9
	ctggg	-3.6	135.5	-58.6	-68.3	-76.5
	ctggg	-4.2	136.1	-57.8	-68.1	-76.8
	ctggg	-4.1	135.9	-57.2	-68.2	-76.8
[CO ₂ ⁻]	ctggt	-2.8	136.6	-62.3	-75.1	159.5
	ctggt	-3.3	136.5	-62.4	-76.2	160.5
	ctggt	-3.6	136.1	-62.5	-76.6	160.4
	ctggt	-3.8	136.0	-62.5	-76.9	161.0
	cgggt	-3.0	134.5	-62.4	-77.3	160.9
[CO ₂ ⁻]	cgtgg	-0.1	110.3	175.2	68.5	77.9
	cgtgg	1.2	109.7	176.0	69.7	76.3
	cgtgg	1.5	110.9	176.8	70.6	76.9
	cgtgg	1.7	111.1	176.9	71.0	77.6
	cgtgg	1.8	112.0	178.0	71.3	77.4
[COOH]	ctggg	-2.1	135.0	-59.2	-66.1	-76.9
	ctggg	-2.3	136.7	-58.8	-66.4	-76.8
	ctggg	-2.3	137.6	-58.0	-66.0	-76.8
	ctggg	-2.5	138.1	-59.1	-67.0	-76.0
	ctggg	-2.6	139.3	-56.3	-65.1	-76.9
[COOH]	cgggt	-2.0	134.7	-66.2	-77.2	172.3
	ctggt	-2.5	137.8	-65.8	-76.5	173.4
	[CO ₂ ⁻] [CO ₂ ⁻] [COOH]	!ggg [CO2 ⁻] ctggg ctggg ctggg ctggg ctggg [CO2 ⁻] ctggt ctggt ctggt ctggt ctggt [CO2 ⁻] ctggg ctggt ctggg ctggt ctggg ctggg ctggg ctggg	$ \begin{array}{c} \mbox{tggg} & -173.9 \\ \mbox{[CO_2^-]} & \mbox{ctggg} & -3.5 \\ \mbox{ctggg} & -3.6 \\ \mbox{ctggg} & -3.6 \\ \mbox{ctggg} & -4.2 \\ \mbox{ctggg} & -4.1 \\ \mbox{[CO_2^-]} & \mbox{ctggt} & -2.8 \\ \mbox{ctggt} & -3.3 \\ \mbox{ctggt} & -3.6 \\ \mbox{ctggt} & -3.6 \\ \mbox{ctggt} & -3.6 \\ \mbox{ctggt} & -3.8 \\ \mbox{cgggt} & -3.0 \\ \mbox{ctggg} & 1.2 \\ \mbox{cgtgg} & 1.2 \\ \mbox{cgtgg} & 1.5 \\ \mbox{cgtgg} & 1.8 \\ \mbox{[COOH]} & \mbox{ctggg} & -2.3 \\ \mbox{ctggg} & -2.3 \\ \mbox{ctggg} & -2.3 \\ \mbox{ctggg} & -2.5 \\ \mbox{ctggg} & -2.6 \\ \mbox{[COOH]} & \mbox{cgggt} & -2.0 \\ \mbox{ctggt} & -2.5 \\ \end{tabular}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tggg -173.9 -51.5 -77.5 [CO ₂ ⁻] ctggg -3.5 137.6 -57.4 ctggg -3.9 137.2 -57.6 ctggg -3.6 135.5 -58.6 ctggg -4.2 136.1 -57.8 ctggg -4.1 135.9 -57.2 [CO ₂ ⁻] ctggt -2.8 136.6 -62.3 ctggt -3.3 136.5 -62.4 ctggt -3.6 136.1 -62.5 ctggt -3.6 136.1 -62.5 ctggt -3.6 136.1 -62.5 ctggt -3.0 134.5 -62.4 ctggt -0.1 110.3 175.2 cgtgg 1.2 109.7 176.0 cgtgg 1.2 109.7 176.9 cgtgg 1.8 112.0 178.0 [COOH] ctggg -2.3 136.7 -58.8 ctggg -2.3 136.7 -58.8 </td <td>tggg -173.9 -51.5 -77.5 61.5 [CO₂⁻] ctggg -3.5 137.6 -57.4 -65.8 ctggg -3.9 137.2 -57.6 -67.0 ctggg -3.6 135.5 -58.6 -68.3 ctggg -4.2 136.1 -57.8 -68.1 ctggg -4.1 135.9 -57.2 -68.2 [CO₂⁻] ctggt -2.8 136.6 -62.3 -75.1 ctggt -3.3 136.5 -62.4 -76.2 ctggt -3.8 136.0 -62.5 -76.6 ctggt -3.8 136.0 -62.5 -76.9 cgggt -3.8 136.0 -62.5 -76.9 cgggt -0.1 110.3 175.2 68.5 cgtgg 1.2 109.7 176.0 69.7 cgtgg 1.2 109.7 176.8 70.6 cgtgg 1.5 110.9 176.8 71.3</td>	tggg -173.9 -51.5 -77.5 61.5 [CO ₂ ⁻] ctggg -3.5 137.6 -57.4 -65.8 ctggg -3.9 137.2 -57.6 -67.0 ctggg -3.6 135.5 -58.6 -68.3 ctggg -4.2 136.1 -57.8 -68.1 ctggg -4.1 135.9 -57.2 -68.2 [CO ₂ ⁻] ctggt -2.8 136.6 -62.3 -75.1 ctggt -3.3 136.5 -62.4 -76.2 ctggt -3.8 136.0 -62.5 -76.6 ctggt -3.8 136.0 -62.5 -76.9 cgggt -3.8 136.0 -62.5 -76.9 cgggt -0.1 110.3 175.2 68.5 cgtgg 1.2 109.7 176.0 69.7 cgtgg 1.2 109.7 176.8 70.6 cgtgg 1.5 110.9 176.8 71.3

K ⁺ (Met)		ctggt	-2.5	138.2	-66.0	-77.2	173.6
Rb ⁺ (Met)		ctggt	-2.5	138.3	-66.0	-77.7	173.6
Cs ⁺ (Met)		ctggt	-2.4	139.0	-64.4	-76.7	173.2
Li ⁺ (Met)	[COOH]	cgtgg	1.5	118.3	177.0	75.5	80.0
Na ⁺ (Met)		cgtgg	1.7	117.4	174.0	75.8	80.3
K ⁺ (Met)		cgtgg	1.7	116.8	173.7	76.2	79.8
Rb ⁺ (Met)		cgtgg	2.4	115.4	172.2	75.3	80.0
Cs ⁺ (Met)		cgtgg	1.9	117.0	173.3	76.8	79.1
Na ⁺ (Met)	[COOH,S]	cgggg	6.6	107.1	-60.4	-81.9	68.5
K ⁺ (Met)		cgggg	4.7	111.2	-63.3	81.0	71.3
Rb ⁺ (Met)		cgggg	4.1	112.1	-65.0	80.7	73.3
Cs ⁺ (Met)		cgggg	2.9	114.5	-66.5	79.2	73.6
Na ⁺ (Met)	[COOH,S]	cgggt	5.7	109.5	-59.5	87.3	176.6
K ⁺ (Met)		cgggt	2.7	117.3	-64.5	82.4	176.1
Rb ⁺ (Met)		cgggt	0.7	124.3	-69.0	76.6	179.9
Cs ⁺ (Met)		ctggt	-2.6	139.7	-77.9	62.5	-174.6
Na ⁺ (Met)	[COOH,S]	cgcgg	10.2	94.1	48.2	-86.1	-71.5
K ⁺ (Met)		cgcgg	8.6	97.1	47.8	-87.6	-77.5
Rb ⁺ (Met)		cgcgg	8.3	98.6	47.9	-88.3	-78.7
Cs ⁺ (Met)		cgcgg	7.5	99.4	47.8	-88.3	-80.2

^{*a*} Values calculated at the B3LYP/6-311+G(d,p) (roman) and B3LYP/HW*/6-311+G(d,p) (italics) levels of theory .

K^{-}) and B3	LYP/HW	/*/6-311+0	G(d,p) (M	$T = Rb^{+}$ and	d Cs⁺) lev	vels of theo	ryª		
Li ⁺ (Me	et)	Na ⁺ (M	et)	K ⁺ (Me	et)	$Rb^+(M)$	et)	$Cs^+(Me)$	et)
54	1	46	1	40	1	37	0.5	37	0.3
88	1	75	1	64	0.4	57	1	50	1
140	1	106	7	78	5	65	3	56	2
146	3	120	4	100	4	88	2	78	6
158	3	149	3	113	10	90	7	79	3
176	0.3	161	10	144	3	119	8	103	5
195	1	178	1	152	7	131	3	124	2
279	9	187	4	164	16	152	0.5	151	0.5
286	14	216	12	173	3	173	0.1	170	0.2
325	8	216	26	202	2	209	1	212	2
351	44	287	5	271	16	254	27	245	32
371	29	308	2	301	2	296	4	293	3
415	18	341	15	328	19	325	18	326	21
453	58	401	43	369	28	358	15	355	8
512	59	461	12	454	7	453	7	453	7
522	27	512	10	508	10	507	9	508	9
618	60	608	66	597	68	592	67	589	65
636	37	634	18	633	13	632	13	630	13
679	76	666	72	656	69	650	66	647	63
684	10	684	6	684	7	684	6	684	7
738	66	734	53	729	48	725	47	724	46
814	8	812	9	811	12	809	14	806	18
843	4	843	3	843	3	840	4	839	5
858	7	853	10	850	12	849	14	847	17
952	4	952	4	950	6	951	12	949	60
970	7	969	17	965	43	960	62	953	34
981	2	977	4	973	3	972	2	970	4
993	17	1001	45	996	85	990	62	986	35
1030	127	1015	79	1011	9	1010	7	1009	8
1072	6	1082	13	1088	21	1090	28	1092	35
1153	3	1155	20	1152	206	1148	225	1145	235
1163	127	1159	176	1159	16	1158	9	1158	5
1183	65	1186	26	1189	13	1189	10	1188	8
1244	3	1249	4	1252	5	1252	6	1251	7
1284	27	1284	36	1282	39	1280	39	1279	39
1314	29	1310	20	1307	14	1304	11	1303	9
1320	4	1324	6	1326	5	1327	4	1327	4
1340	1	1340	1	1339	1	1339	2	1338	2
1353	5	1357	5	1359	4	1360	4	1361	4
1411	46	1402	34	1397	28	1394	23	1392	21
1430	13	1431	13	1430	13	1431	13	1431	13
1440	14	1441	15	1442	13	1443	18	1443	15
1447	20	1444	15	1442	15	1443	10	1443	11
1452	10	1451	8	1451	6	1448	4	1448	4

Table S4. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [N,CO,S] tgcgt conformer of M^+ (Met) calculated at B3LYP/6-311+G(d,p) ($M^+ = Li^+$, Na⁺, and K^+) and B3LYP/HW*/6-311+G(d,p) ($M^+ = Rb^+$ and Cs⁺) levels of theory^a

1624	73	1623	65	1626	64	1624	62	1624	61
1705	319	1721	318	1728	342	1736	339	1739	350
2969	2	2963	3	2951	8	2942	11	2936	13
2974	14	2971	12	2968	11	2967	11	2968	12
2978	5	2973	13	2971	17	2970	20	2970	19
2984	5	2976	5	2973	8	2972	8	2972	10
3012	3	3010	3	3010	4	3010	5	3011	6
3026	4	3022	5	3019	7	3019	8	3020	9
3067	2	3063	2	3057	3	3055	4	3053	4
3071	1	3068	1	3064	2	3062	3	3060	3
3392	18	3395	10	3396	6	3399	4	3402	3
3456	20	3458	15	3461	11	3466	9	3470	8
3627	152	3637	138	3644	128	3649	120	3653	115

Table S5. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [N,CO,S] tgcgg conformer of M^+ (Met) calculated at B3LYP/6-311+G(d,p) ($M^+ = Li^+$, Na⁺, and K^+) and B3LYP/HW*/6-311+G(d,p) ($M^+ = Rb^+$ and Cs^+) levels of theory^a

Li	i ⁺ (Met)	Na ⁺ ((Met)	$K^+(1)$	Met)	Rb ⁺ (Met)	Cs^+	(Met)
5	6 1	50	2	47	1	30	2	19	2
8	.4 0.4	73	0.1	58	0.1	49	0.4	36	2
11	2 1	89	3	75	2	61	2	44	1
14	4 1	119	5	90	6	66	2	58	0.2
14	6 2	128	3	117	7	94	6	84	6
16	64 2	160	2	134	2	116	7	102	6
23	32 2	179	14	147	4	130	7	118	4
30	0 7	202	13	160	8	135	3	136	2
30)6 4	215	23	165	21	159	1	157	5
32	20 17	240	5	235	1	237	10	235	37
34	8 39	303	1	285	24	272	27	261	5
38	34 37	314	3	296	3	290	2	281	5
41	.9 18	337	16	320	13	319	11	314	15
46	60 60	403	40	363	16	355	6	351	2
50)3 47	461	7	455	4	451	3	443	5
52	23 32	504	10	501	11	502	11	509	14
59	9 13	594	16	593	38	594	48	599	59
62	28 78	616	62	612	39	614	30	614	20
67	79 78	663	68	655	65	652	61	653	53
68	32 11	681	10	686	12	685	13	684	14
73	66 64	728	55	724	48	721	45	722	42
80	6 8	803	10	805	11	805	12	797	14
82	27 9	823	10	822	9	822	9	826	11
86	52 7	853	7	847	12	843	20	837	26
93	64 0.3	933	0.2	933	1	933	10	918	85
95	53 3	955	3	952	3	952	3	951	18
99	0 17	993	44	981	112	963	115	954	11

1002	7	1004	4	1008	24	1005	4	1004	3
1033	131	1019	101	1009	5	1010	3	1009	1
1074	8	1081	15	1087	26	1090	38	1093	51
1163	120	1158	186	1152	211	1147	224	1146	251
1175	23	1176	7	1176	7	1173	7	1159	7
1186	51	1193	24	1194	13	1191	9	1187	3
1247	4	1253	5	1255	5	1255	6	1252	9
1287	22	1285	27	1281	30	1278	32	1270	28
1318	25	1312	20	1308	12	1307	9	1305	4
1324	5	1328	6	1329	6	1328	7	1326	11
1338	1	1340	2	1340	4	1339	4	1336	4
1355	7	1355	6	1358	4	1358	3	1358	1
1413	46	1402	30	1396	25	1392	20	1387	17
1431	7	1428	6	1428	5	1429	4	1431	16
1438	17	1434	20	1433	18	1433	19	1432	6
1439	13	1441	9	1442	9	1443	11	1440	13
1454	19	1445	16	1445	15	1445	12	1443	10
1621	69	1624	62	1621	58	1622	54	1617	50
1708	319	1724	317	1730	343	1737	340	1738	349
2966	4	2960	6	2951	8	2948	9	2961	4
2976	11	2970	5	2964	7	2966	7	2971	13
2982	6	2975	14	2972	16	2971	18	2973	16
2985	2	2981	4	2978	6	2978	6	2982	5
3005	5	3003	7	3000	8	3001	10	3003	11
3029	3	3024	4	3021	6	3021	7	3027	6
3061	6	3059	6	3054	7	3053	6	3058	4
3068	0.4	3064	1	3063	1	3062	2	3064	2
3392	14	3394	8	3399	4	3406	3	3414	8
3461	15	3461	11	3469	8	3478	7	3489	27
3625	159	3635	142	3643	131	3648	122	3650	112
	antag tha	ragion of 1	a ID ana	atman in al.	idad in th	a measant a		tal atudre	

Ta	ble S6. Vibrational frequencies (cm ⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the
[N,	CO,S] tgggt conformer of M ⁺ (Met) calculated at B3LYP/6-311+G(d,p) (\dot{M}^+ = Li ⁺ , Na ⁺ , and
\mathbf{K}^{+1}) and $B3LYP/HW*/6-311+G(d,p)$ (M ⁺ = Rb ⁺ and Cs ⁺) levels of theory ^a

.) and D3	j and DSE 11/11/ v /0-511+O(d,p) (W - KO and CS) levels of theory										
 Li ⁺ (Me	et)	Na ⁺ (Mo	et)	$K^+(M)$	et)	Rb ⁺ (Me	et)	Cs ⁺ (Me	et)		
51	0.2	46	0.1	45	0.01	41	0.1	31	0.4		
91	1	79	1	67	2	57	2	50	1		
124	2	97	3	73	3	69	2	67	6		
136	1	115	4	98	3	80	8	68	1		
163	3	153	14	105	14	88	4	76	5		
165	1	154	4	127	9	105	3	92	1		
236	3	180	5	157	1	136	6	118	4		
249	0.5	183	12	172	14	155	0.4	154	0.4		
287	15	224	19	186	6	188	2	187	2		
311	2	234	6	215	1	210	1	209	1		
336	52	258	2	254	5	253	9	248	14		

370	39	321	5	296	15	290	12	287	10
405	18	323	16	325	8	326	8	324	8
458	73	407	29	383	18	376	13	371	8
504	45	470	13	462	10	462	9	462	9
558	25	542	15	531	15	527	15	523	16
608	72	588	56	573	51	566	51	561	49
642	18	640	10	634	70	627	70	622	69
665	60	647	65	639	4	637	2	636	1
683	9	683	7	685	8	685	9	686	9
723	76	716	62	711	60	709	57	707	56
784	18	779	18	779	19	778	20	778	20
846	9	847	10	845	13	845	16	843	21
893	10	895	15	892	21	890	27	889	31
942	3	939	4	939	4	938	4	937	4
965	4	962	5	959	5	957	4	955	4
971	2	971	5	970	15	967	28	963	44
1021	74	1012	106	999	91	992	-0 70	987	45
1033	53	1031	6	1030	2	1030	3	1029	5
1063	12	1072	16	1074	20	1077	25	1078	28
1148	30	1147	73	1143	105	1143	138	1142	156
1173	160	1169	134	1166	108	1165	80	1165	63
1211	9	1220	10	1219	4	1221	4	1222	3
1222	2	1223	1	1224	7	1227	6	1228	6
1294	23	1294	28	1294	31	1292	31	1292	31
1310	20	1308	24	1305	21	1304	21	1305	20
1320	13	1323	7	1324	6	1324	5	1324	5
1339	0.2	1339	0.3	1337	1	1336	1	1336	1
1360	3	1364	3	1365	4	1366	4	1366	4
1412	60	1401	37	1397	28	1395	23	1395	21
1430	13	1430	12	1431	12	1430	12	1430	12
1440	16	1441	16	1441	18	1442	17	1441	16
1453	7	1451	6	1446	3	1445	2	1445	4
1456	7	1452	9	1449	9	1447	11	1448	10
1621	74	1621	69	1620	70	1619	67	1617	67
1712	327	1725	318	1728	341	1734	336	1736	345
2970	1	2949	7	2931	11	2921	13	2913	15
2975	20	2971	8	2965	8	2961	11	2959	13
2978	2	2975	12	2972	18	2971	18	2970	19
2982	8	2979	15	2976	18	2980	19	2982	19
3017	1	3017	1	3016	2	3018	1	3020	1
3028	5	3029	6	3030	7	3031	9	3033	10
3066	2	3062	2	3057	3	3056	4	3054	4
3072	1	3069	1	3065	2	3064	2	3062	3
3396	17	3397	11	3396	7	3398	5	3399	4
3460	18	3459	13	3460	9	3463	7	3465	6
3630	160	3641	143	3649	131	3655	121	3658	115

K^{T}) and B.	BLYP/HW	/*/6-311+0	G(d,p) (M	$I^+ = Rb^+$ and	$d Cs^{T}$) le	vels of the	ory ^a		
Li ⁺ (M	et)	Na ⁺ (M	et)	K ⁺ (Me	et)	$Rb^+(Me)$	et)	$Cs^{+}(M$	et)
46	1	43	1	57	2	56	3	42	3
84	2	72	2	74	1	62	4	53	4
119	2	97	5	78	5	67	2	66	1
138	0.1	116	7	94	14	81	5	82	2
146	2	140	7	108	4	92	3	82	3
182	1	145	2	125	8	106	3	106	4
233	1	170	9	154	0.2	147	5	131	3
278	8	200	14	170	3	158	0.1	155	0.03
302	8	223	23	184	16	169	1	167	1
311	1	247	0.2	243	2	238	4	232	5
334	61	285	1	286	1	289	12	283	24
366	29	319	7	301	21	292	12	289	1
400	15	323	15	330	4	334	4	331	5
463	72	404	34	391	18	383	13	377	10
505	52	470	12	476	12	475	11	474	11
569	18	552	12	531	12	522	15	520	15
597	11	580	36	562	23	558	21	556	20
620	74	611	18	615	8	616	9	615	10
665	59	648	70	641	84	633	83	630	79
683	7	685	6	687	5	689	6	688	5
719	75	706	63	701	67	699	61	698	62
780	20	777	20	780	26	782	28	781	29
833	13	832	17	832	23	831	26	830	30
878	6	882	9	887	14	888	17	888	19
933	4	930	6	929	9	927	10	924	12
956	2	958	3	955	3	955	5	958	13
974	17	973	27	971	41	970	53	966	56
1025	83	1012	93	1001	57	995	35	988	19
1028	39	1032	1	1032	1	1032	2	1032	3
1069	16	1080	27	1082	35	1083	42	1082	45
1164	90	1155	149	1149	150	1146	165	1144	172
1174	94	1170	45	1166	41	1165	26	1166	20
1210	7	1219	4	1216	1	1216	0.5	1216	0.3
1226	2	1231	2	1232	4	1234	4	1235	5
1294	21	1293	26	1293	27	1292	27	1291	25
1309	15	1309	14	1306	12	1306	12	1306	12
1320	7	1322	3	1324	2	1325	2	1324	2
1338	3	1338	3	1335	2	1336	1	1336	1
1359	5	1362	5	1363	3	1364	3	1365	3
1410	53	1395	28	1388	23	1387	19	1388	18
1430	2	1429	2	1427	3	1426	4	1425	4
1436	21	1435	19	1433	18	1435	15	1433	16
1438	11	1442	12	1447	14	1446	14	1447	15
1459	6	1458	7	1456	8	1455	8	1453	7

Table S7. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [N,CO,S] tgggg conformer of M⁺(Met) calculated at B3LYP/6-311+G(d,p) (M⁺ = Li⁺, Na⁺, and K⁺) and B3LYP/HW*/6-311+G(d,p) (M⁺ = Rb⁺ and Cs⁺) levels of theory^a

1625	78	1622	73	1618	79	1617	76	1614	76
1711	315	1725	306	1724	333	1731	336	1732	344
2969	2	2942	7	2913	11	2903	14	2896	16
2978	5	2967	6	2959	11	2956	13	2954	15
2981	10	2978	9	2976	10	2974	12	2974	13
2988	6	2986	10	2986	12	2986	14	2985	15
3013	2	3015	1	3018	0.5	3019	1	3020	1
3030	4	3029	6	3033	7	3034	8	3035	9
3066	5	3064	4	3062	3	3059	3	3059	3
3069	1	3068	1	3067	2	3065	2	3064	2
3397	18	3398	12	3398	8	3400	5	3401	4
3463	19	3462	14	3463	10	3465	8	3468	7
3630	150	3641	134	3648	122	3653	113	3657	107

Table S8. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the $[CO_2^-]$ ctggg conformer of M⁺(Met) calculated at B3LYP/6-311+G(d,p) (M⁺ = Li⁺, Na⁺, and K⁺) and B3LYP/HW*/6-311+G(d,p) (M⁺ = Rb⁺ and Cs⁺) levels of theory^a

Li ⁺ (N	let)	Na ⁺ (Me	et)	K ⁺ (Me	t)	Rb ⁺ (Me	et)	Cs ⁺ (Me	et)
45	2	36	4	36	5	29	4	17	3
69	3	58	5	58	7	49	6	47	6
83	1	79	5	76	4	72	7	67	7
116	5	91	10	82	8	77	4	72	3
151	0.4	125	22	106	16	96	11	89	10
162	68	152	7	130	12	112	6	99	3
220	37	159	15	143	1	152	16	141	19
237	31	221	35	185	35	163	6	146	1
269	13	252	22	226	31	220	32	215	29
300	18	269	7	262	4	260	4	256	5
336	29	308	36	305	14	301	14	300	12
343	26	315	15	311	41	315	34	314	29
389	5	344	43	342	38	346	45	343	55
481	98	401	15	406	10	405	6	412	5
518	1	509	15	510	16	507	13	507	15
523	84	518	12	514	15	515	18	515	17
595	75	584	16	581	14	579	11	579	11
613	1	612	1	613	1	614	2	611	2
681	4	681	3	683	3	683	3	683	3
770	16	765	12	760	15	758	14	757	15
810	11	809	11	809	11	807	11	807	11
830	10	830	9	830	8	829	8	830	8
878	23	867	30	854	47	850	50	846	56
930	10	930	12	931	13	933	13	931	13
952	7	950	8	947	9	945	9	943	9
958	3	954	2	955	3	956	3	954	3
995	13	996	15	996	16	997	17	997	18

1055	23	1055	26	1057	28	1057	30	1056	31
1091	22	1088	18	1085	15	1084	15	1083	15
1123	61	1125	67	1124	75	1123	75	1124	78
1163	2	1161	2	1159	1	1158	1	1157	1
1237	46	1237	50	1235	54	1235	55	1235	57
1280	12	1277	14	1273	17	1271	15	1269	15
1310	15	1308	25	1305	32	1304	50	1302	72
1333	27	1330	44	1326	74	1321	89	1317	85
1339	4	1337	8	1337	4	1336	2	1334	2
1357	18	1354	30	1351	48	1349	44	1349	41
1398	136	1378	99	1369	68	1366	44	1364	33
1430	6	1428	16	1423	228	1413	278	1407	287
1432	54	1430	86	1430	23	1429	7	1428	7
1437	31	1435	32	1433	10	1432	12	1432	11
1442	26	1441	40	1438	62	1439	29	1436	30
1457	207	1444	147	1442	13	1443	12	1442	13
1576	43	1576	19	1576	12	1573	10	1571	8
1620	277	1637	118	1636	12	1635	15	1635	15
1634	11	1639	218	1650	310	1661	324	1667	315
2835	962	2895	869	2935	805	2959	407	2923	351
2970	4	2967	7	2966	7	2965	210	2962	22
2974	15	2974	15	2974	15	2969	476	2972	56
2990	4	2989	5	2988	5	2973	48	2985	677
3003	0.1	3006	0.5	3006	7	2988	6	2987	27
3013	2	3013	2	3012	1	3007	1	3008	16
3037	3	3036	3	3026	326	3011	5	3011	3
3058	5	3057	6	3035	7	3035	5	3035	5
3067	1	3066	1	3056	6	3054	7	3054	7
3169	201	3102	258	3065	1	3065	1	3064	1
3419	83	3422	_77	3427	75	3429	71	3431	69
aldindi	aataa thaa *	agion of th			بمألم متثلممام	a management as		La laterater	

Table S9. Vibrational frequencies (cm^{-1}) scaled $[CO_2^-]$ cgtgg and ctggt conformers of $M^+(Met)$ and B3LYP/HW*/6-311+G(d,p) $(M^+ = Rb^+ and Cb^+)$	d by 0.975 and IR intensities (kM/mole) for the calculated at B3LYP/6-311+G(d,p) ($M^+ = K^+$) Cs ⁺) ^a
	[CO -] start

		$[CO_2^-]$	cgtgg			[CO ₂ ⁻] ctggt					
K ⁺	(Met)	Rb^+	Met)	Cs^+	Met)	K^+ (1	Met)	Rb ⁺ (Met)	$Cs^{+}(1)$	Met)
3	6 1	30	2	31	2	25	0.4	25	0.3	23	0.2
5	6 8	52	8	53	3	51	5	51	6	49	7
6	5 7	61	2	59	3	62	14	58	7	54	4
8	6 4	78	7	73	9	88	4	77	5	67	7
12	2 21	106	7	93	5	115	17	109	13	97	7
14	7 8	124	18	118	15	141	10	117	7	108	9
15	5 14	147	3	151	4	150	8	147	11	143	11
17	9 14	174	12	174	13	187	41	171	18	167	13
20	4 29	199	27	196	21	196	7	195	15	192	17
23	0 12	217	1	216	1	230	12	226	6	226	5

299	5	298	8	299	8	295	18	293	14	293	13
323	53	320	58	331	62	309	23	308	25	307	31
351	11	356	17	356	21	338	39	337	45	336	47
357	14	357	5	362	2	400	22	404	18	406	15
435	55	434	50	431	52	511	30	511	29	510	31
519	28	520	26	520	28	522	1	520	1	520	2
616	1	616	1	618	1	581	15	580	12	582	11
651	12	650	10	649	10	635	0.3	634	0.3	634	0.3
684	3	684	3	686	3	688	5	690	5	690	4
756	7	754	7	754	9	761	12	759	11	757	12
793	3	792	3	792	3	813	13	812	13	812	13
831	1	831	2	830	3	847	15	843	29	840	42
882	92	879	96	877	102	860	41	857	31	857	25
931	11	931	10	929	10	940	2	941	2	940	3
956	3	956	3	954	3	951	13	950	13	950	12
961	14	961	15	960	14	961	3	962	2	961	2
1003	7	1003	7	1005	7	986	24	985	26	986	28
1030	26	1031	27	1035	27	1059	21	1059	23	1059	25
1078	23	1076	26	1077	34	1083	20	1082	19	1080	18
1115	89	1115	91	1116	96	1127	63	1126	64	1127	68
1185	9	1185	11	1186	13	1138	12	1139	13	1138	12
1231	28	1231	29	1231	29	1237	49	1237	50	1237	50
1256	21	1254	21	1252	26	1269	22	1267	23	1266	24
1295	13	1294	14	1296	18	1304	41	1302	55	1301	65
1322	132	1315	168	1308	181	1326	68	1320	79	1316	79
1335	3	1335	4	1332	41	1334	5	1335	4	1335	4
1346	99	1339	76	1335	32	1353	39	1350	44	1348	44
1371	49	1368	29	1368	22	1369	69	1365	43	1365	35
1417	199	1407	218	1402	234	1426	176	1417	249	1411	269
1428	12	1427	9	1428	8	1431	71	1431	22	1431	19
1433	19	1433	16	1434	14	1440	16	1437	31	1437	26
1442	18	1442	15	1442	14	1441	53	1441	18	1441	17
1447	12	1447	11	1446	13	1453	10	1453	8	1454	7
1589	12	1587	10	1589	8	1578	11	1578	6	1576	5
1629	36	1629	21	1628	16	1633	8	1652	8	1652	8
1650	336	1001	363	1007	35 2	1649	30 7	1000	325	1000	317
2939	0	2957) 10	2945	285	2935	831	2961	385	2924	333
29/3	212	2973	18	2956	8	2966	0	2964	191	2963	10
29/8	422	2979	8	29/3	10	2973	13	2971	317	2972	21
2981	33	2994	80	2980		2978	10	2974	212	2978	33 720
3007	2	3006	4	3005	4	3007	5	2979	64	2984	/29
3025	16	<i>3</i> 024	853	3023	24	3020	0.2	3008	1	5010 2010	9
3029 2059	5	3026	63	3028	6	3030	292	3020	2	3019	2
3038	3	3028	64	3036	/64	3030	31	3030	1	3030	7
3066	1	305/ 2005	10	3036	13	3038	6	3038	6	3036	/
3068 2414	424	3065	1	3065		506/	l	306/	2	3066	2
5414	13	5418	/1	3420	69	5424	81	5427	11	5429	/6

K ⁺) and B3LYP/HW*/6-311+G(d,p) (M ⁺ = Rb ⁺ and Cs ⁺) levels of theory ^a Li ⁺ (Mot) $Na^+(Mot) = K^+(Mot) = Db^+(Mot) = Ca^+(Mot)$									
Li ⁺ ((Met)	Na ⁺ (N	(let)	$K^{+}(N$	(let)	$Rb^+(N)$	Met)	$Cs^{+}(I)$	Met)
40) 4	32	6	26	5	23	4	20	3
62	2 7	47	7	43	9	38	5	40	4
83	3 17	75	8	68	4	57	7	55	5
107	21	80	8	71	11	66	1	65	0.4
136	5 120	100	19	83	2	80	1	79	1
146	5 4	133	11	120	8	98	6	85	5
155	5 58	153	3	153	6	145	13	141	10
193	3 20	182	13	171	24	160	2	154	1
253	3 30	228	24	192	9	190	8	188	8
264	4 34	268	17	261	8	262	6	262	7
301	37	292	36	292	18	291	12	295	10
332	2 17	321	16	324	13	324	12	323	10
453	3 108	368	14	372	18	372	17	377	17
466	5 13	429	16	425	16	418	16	419	16
503	8 2	503	1	504	1	504	1	504	2
553	8 44	532	4	528	4	526	4	526	3
573	8 4	564	2	561	2	559	2	557	2
619) 3	618	2	619	2	619	2	617	3
685	5 2	685	2	685	2	686	2	686	2
743	3 5	742	3	738	4	736	4	735	5
806	5 15	807	11	805	11	805	10	804	11
833	8 8	833	3	830	3	829	4	828	5
839) 2	841	5	843	6	843	6	844	6
931	24	920	58	917	68	913	77	910	82
955	5 5	952	3	951	4	953	39	951	41
959	56	954	51	953	47	953	8	953	4
1001	21	1000	16	1000	13	1001	13	999	27
1026	5 25	1021	18	1021	20	1011	62	1003	56
1084	24	1057	86	1034	83	1024	39	1025	31
1117	67	1091	9	1094	9	1095	9	1095	10
1123	<u> </u>	1146	19	1150	6	1149	6	1150	7
1158	<u> </u>	1150	23	1157	19	1160	17	1161	14
1185		1179	6	1180	7	1180	8	1179	9
1254	42	1252	37	1252	35	1252	34	1250	31
1267	5	1267	3	1268	1	1268	1	1268	0
1307	5	1307	4	1307	5	1307	5	1307	6
1330) 3	1335	2	1333	l	1335	1	1335	1
1348		1351	26	1353	21	1353	18	1354	18
1357		1359	8	1361	6	1362	6	1364	5
1384	496	1394	466	1403	445	1404	434	1407	422
1428	5 6 N 21	1430	7	1429	5	1429	5	1429	5
1432		1454	19	1455	20	1453	20	1453	20
1439		1440	18	1443	14	1441	10	1442	17
1441	13	1442	11	1445	14	1445	10	1444	9

Table S10. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [COOH] ctggg conformer of M⁺(Met) calculated at B3LYP/6-311+G(d,p) (M⁺ = Li⁺, Na⁺, and K⁺) and B3LYP/HW*/6-311+G(d,p) (M⁺ = Rb⁺ and Cs⁺) levels of theory^a

1609	28	1613	25	1616	24	1616	23	1615	24
1696	496	1724	428	1733	420	1743	399	1747	387
2444	663	2779	658	2902	633	2961	3	2961	2
2965	5	2962	6	2962	9	2968	12	2968	14
2970	12	2969	13	2969	15	2972	48	2971	18
2974	8	2973	10	2972	11	2975	6	2977	8
2975	11	2975	13	2975	15	2983	552	3003	1
3009	5	3007	7	3005	10	3005	22	3019	350
3021	9	3020	11	3020	13	3019	18	3022	251
3052	6	3050	7	3049	7	3048	7	3048	8
3063	1	3062	2	3061	2	3061	2	3060	2
3283	244	3312	191	3329	166	3335	159	3345	134
3483	61	3489	54	3492	51	3492	48	3495	47

Table S11. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [COOH] cgtgg and ctggt conformers of $M^+(Met)$ calculated at B3LYP/6-311+G(d,p) ($M^+ = K^+$) and B3LYP/HW*/6-311+G(d,p) ($M^+ = Rb^+$ and Cs^+)^a

		[COOH]	cgtgg			[COOH] ctggt					
K ⁺ (M	et)	$Rb^+(M)$	let)	$Cs^+(M$	et)	K ⁺ (M	et)	$Rb^+(M)$	let)	$Cs^{+}(N)$	(let)
31	3	29	1	28	2	27	3	22	1	16	1
50	6	43	4	39	3	48	2	47	2	38	2
53	6	51	4	50	2	59	8	53	5	46	7
68	13	63	7	63	6	67	15	57	10	51	4
99	3	89	3	81	4	91	2	88	1	84	2
132	15	108	9	101	5	129	9	103	7	87	5
137	11	131	8	130	8	138	17	132	11	132	11
165	4	161	4	159	4	172	4	170	4	169	1
197	11	195	9	193	8	187	13	175	5	173	6
221	13	209	2	206	1	210	4	208	1	206	1
302	5	300	3	299	3	285	23	285	16	287	14
351	6	349	1	348	10	325	17	325	15	323	14
355	26	357	27	350	10	368	18	367	17	367	17
391	12	385	14	370	18	412	8	404	8	399	7
431	1	431	1	430	1	511	1	512	1	512	1
540	5	537	3	536	4	528	5	526	4	524	4
623	2	623	1	622	2	562	2	561	2	558	2
632	4	633	5	631	4	644	0.3	645	0.4	644	0.4
687	2	687	2	689	2	693	3	693	3	693	3
726	5	724	5	724	5	741	4	739	4	737	5
790	1	791	1	790	1	805	6	805	6	805	6
850	12	849	13	849	16	835	7	835	8	833	10
878	1	877	1	876	1	870	4	872	4	870	3
937	5	936	8	937	9	923	91	920	97	915	105
952	27	952	42	951	61	948	22	948	21	947	19
965	87	964	75	961	60	966	5	965	5	964	4
983	19	982	18	982	22	998	4	998	4	997	16

1018	20	1015	18	1007	42	1019	35	1012	52	1001	53
1035	82	1025	80	1022	47	1038	75	1022	55	1020	39
1081	7	1081	9	1082	9	1097	6	1098	6	1097	6
1123	7	1123	9	1124	10	1133	5	1133	7	1133	7
1172	27	1171	24	1172	22	1158	21	1158	15	1159	12
1206	2	1206	1	1205	1	1174	10	1175	12	1175	13
1262	15	1262	16	1263	21	1255	40	1255	39	1254	39
1271	35	1272	30	1270	24	1265	7	1263	5	1262	3
1306	5	1305	5	1305	4	1304	4	1303	4	1304	5
1329	16	1330	14	1331	13	1334	3	1334	3	1333	3
1334	0	1335	0	1335	1	1356	18	1356	15	1356	13
1352	3	1353	3	1354	3	1358	5	1360	5	1361	6
1403	497	1410	480	1406	469	1403	442	1405	428	1405	415
1425	7	1424	6	1426	6	1432	13	1432	13	1432	13
1434	12	1434	12	1434	12	1440	22	1441	18	1440	20
1442	11	1442	11	1442	11	1441	10	1442	14	1441	12
1449	12	1449	12	1449	10	1453	6	1454	6	1453	6
1634	18	1634	19	1635	19	1621	22	1624	23	1622	23
1735	490	1745	467	1749	457	1733	424	1743	402	1746	393
2902	695	2952	22	2954	2	2892	635	2953	8	2954	18
2953	12	2961	405	2965	5	2952	32	2962	29	2962	3
2967	12	2966	30	2966	28	2963	16	2966	20	2965	21
2967	19	2968	238	2974	9	2967	20	2972	501	2975	11
2976	8	2975	9	3002	133	2976	8	2977	99	3007	13
3002	13	3001	17	3006	531	3007	11	3008	13	3012	37
3022	6	3022	7	3021	7	3012	7	3013	13	3018	561
3046	8	3046	9	3044	9	3047	7	3045	7	3044	8
3060	2	3060	2	3059	3	3063	2	3061	3	3061	3
3337	189	3344	174	3350	164	3327	182	3334	166	3343	148
3468	47	3468	46	3472	46	3490	55	3491	52	3492	51
Daldin	diantag	the marie	matthe	ID are a st		المعامية المعا		a	1 مدينة مسنة	at a de s	

K^+) and $B3LYP$	/HW*/6-31	$1+G(d,p)(M^{+})$	$^{+} = Rb^{+}$ and	Cs ⁺) levels o	of theory ^a	,	,
Na ⁺ (Met)		K ⁺ (Met)		Rb ⁺ (Met)	Cs ⁺ (Met))
49	5	45	3	37	5	29	5
82	1	62	4	41	4	35	1
93	13	63	15	51	3	50	4
106	14	80	10	69	6	70	4
124	15	101	2	88	0.4	83	1
142	1	124	2	110	4	100	6
166	1	161	4	138	10	127	5
180	6	169	16	154	0.3	152	0.2
219	20	188	10	180	2	180	2
243	30	218	12	217	11	219	10

Table S12. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [COOH,S] cgggg conformer of $M^+(Met)$ calculated at B3LYP/6-311+G(d,p) ($M^+ = Li^+$, Na⁺, and K^+) and B3LYP/HW*/6-311+G(d,p) ($M^+ = Rb^+$ and Cs⁺) levels of theory^a

287	1	287	14	275	20	266	19
301	23	291	6	287	1	290	1
330	16	331	18	327	17	329	17
378	1	381	1	375	2	376	2
460	2	464	3	462	2	466	2
534	4	531	4	530	4	530	4
603	3	610	2	612	2	611	2
636	6	624	6	622	6	619	5
682	3	683	3	684	2	686	2
718	11	716	11	715	11	714	12
799	14	794	14	791	14	789	13
820	2	821	3	821	4	821	3
862	43	858	52	856	56	854	61
905	38	905	34	905	37	905	40
930	66	929	64	920	74	918	72
953	68	949	66	946	58	944	50
956	17	954	12	953	8	951	8
983	12	982	8	981	6	980	4
1011	4	1017	6	1016	6	1021	7
1070	14	1072	14	1071	14	1072	15
1131	16	1130	16	1129	18	1131	17
1167	9	1161	9	1160	8	1159	9
1216	3	1214	2	1213	1	1213	1
1232	11	1230	10	1230	9	1230	9
1289	24	1287	23	1287	23	1287	22
1314	8	1314	4	1316	5	1317	3
1327	9	1327	11	1328	10	1328	10
1337	1	1336	1	1336	1	1335	3
1354	75	1352	46	1355	44	1356	34
1378	274	1380	308	1383	308	1386	316
1428	4	1429	3	1427	5	1428	5
1432	16	1434	16	1432	15	1432	15
1442	19	1444	20	1442	20	1443	19
1445	14	1445	11	1445	10	1445	9
1624	57	1625	58	1623	59	1623	60
1753	306	1756	317	1763	317	1764	318
2963	6	2961	10	2957	9	2956	10
2975	9	2971	12	2969	14	2968	16
2985	5	2982	6	2979	8	2978	8
2989	4	2986	6	2984	8	2982	10
3020	3	3018	3	3016	3	3015	3
3033	5	3029	5	3027	6	3026	8
3062		3056	4	3053	5	3050	5
3063	5	3058	5	3056	4	3054	4
31/2	412	31/8	431	3200	415	3212	416
3429	15	3433	12	3433	10	3435	9
5499	26	3303	25	3303	23	3304	23

ć	COOH,S] cgggt	·· · · ·		[COOH,S] cgcgg						
$K^+(N)$	let)	$Rb^{+}(N)$	/let)	$Cs^+(N)$	/let)	$K^+(N)$	(let)	$Rb^+(N)$	/let)	$Cs^+(N)$	Aet)
45	5	24	1	15	3	51	9	40	8	35	7
50	3	41	8	26	8	59	8	47	7	42	5
61	9	46	5	47	3	68	11	55	0.3	55	0.2
74	20	54	5	55	2	86	7	74	3	69	2
99	4	81	2	83	4	95	1	86	1	83	1
105	1	100	1	94	1	115	3	101	2	94	2
156	3	140	14	123	11	165	0.3	146	12	131	9
172	11	161	1	152	1	179	14	154	1	154	1
184	17	175	2	174	2	181	19	176	8	173	7
228	0.3	229	0.3	237	1	224	8	222	7	222	6
251	8	253	3	271	11	308	4	303	11	301	12
273	19	262	19	306	11	316	12	310	3	310	2
328	22	329	19	327	14	323	12	320	16	321	16
378	0.2	375	1	366	4	350	13	347	9	346	9
477	3	487	3	514	5	435	2	435	2	434	2
532	6	532	5	534	7	531	5	529	4	527	4
610	4	590	4	555	4	619	4	622	4	624	4
634	1	636	1	642	2	645	5	641	5	640	5
686	3	688	2	690	2	688	3	687	3	688	2
727	11	724	10	721	9	714	13	713	14	712	14
798	14	794	11	788	17	772	4	769	4	768	5
829	8	822	23	812	62	818	5	815	5	814	6
869	71	864	70	863	52	873	88	866	90	866	90
909	13	910	7	907	85	909	92	898	98	897	98
933	74	923	86	919	7	934	6	934	3	935	4
953	32	948	38	941	36	957	11	955	9	953	6
961	26	960	11	957	1	965	34	965	29	965	30
968	6	965	1	966	7	996	6	995	7	995	7
1032	5	1040	6	1053	8	1016	13	1018	13	1018	12
1071	8	1077	8	1088	11	1057	10	1058	11	1058	12
1126	8	1123	4	1114	1	1125	9	1125	10	1125	10
1166	12	1167	15	1176	10	1181	11	1178	10	1178	11
1209	2	1206	4	1195	9	1218	4	1216	4	1217	3
1230	17	1227	17	1214	11	1240	2	1239	1	1240	1
1287	24	1286	22	1280	11	1288	24	1285	25	1286	25
1312	3	1310	5	1302	13	1308	15	1310	18	1309	16
1332	14	1336	4	1337	1	1321	1	1322	3	1323	3
1339	1	1343	10	1353	9	1338	2	1336	2	1335	1
1355	32	1357	22	1364	11	1355	20	1353	25	1353	19
1386	325	1389	345	1385	374	1378	353	1374	348	1377	352
1429	11	1430	11	1429	11	1428	4	1426	5	1426	5
1442	16	1442	11	1440	17	1434	17	1433	15	1432	15
1444	18	1442	22	1443	13	1444	11	1443	11	1443	11

Table S13. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for the [[COOH,S] cgggt and cgcgg conformers of $M^+(Met)$ calculated at B3LYP/6-311+G(d,p) ($M^+ = K^+$) and B3LYP/HW*/6-311+G(d,p) ($M^+ = Rb^+$ and Cs^+)^a

1452	9	1451	7	1456	6	1451	7	1454	6	1454	6
1624	58	1621	57	1621	42	1624	46	1625	45	1624	45
1750	325	1756	322	1753	324	1752	311	1757	306	1758	310
2968	11	2960	20	2954	21	2954	10	2953	12	2951	12
2971	15	2968	15	2966	8	2972	13	2971	14	2969	14
2972	11	2969	10	2968	19	2974	5	2972	7	2970	9
2982	4	2981	5	2976	8	2991	3	2990	3	2988	4
3017	2	3011	6	3008	7	3001	14	3001	17	2999	18
3022	6	3019	5	3021	5	3045	1	3044	2	3044	2
3054	3	3050	4	3049	5	3056	4	3053	5	3051	6
3061	3	3059	4	3060	4	3062	2	3059	3	3058	3
3179	425	3195	417	3238	392	3219	394	3267	364	3269	365
3437	11	3441	7	3440	4	3427	11	3428	9	3428	8
3507	28	3512	31	3516	29	3499	22	3500	21	3501	20

Table S14. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for $H^+(Met)$ [N,CO,S] conformers calculated at B3LYP/6-311+G(d,p) levels of theory^a

[N,CO,S]tg	gtgg	[N,CO,S]tg	gggg	[N,CO,S]t	gtgt	[N,CO,S]t	gggt
44	5	47	2	39	2	35	2
63	1	67	1	63	0.2	58	1
92	6	79	1	76	5	92	4
147	2	125	1	147	2	143	3
160	7	151	0.5	166	3	157	2
185	1	230	35	189	14	213	19
214	11	256	3	198	3	238	15
281	10	281	18	251	5	275	20
321	29	299	25	308	43	294	17
337	27	341	6	320	6	327	5
355	2	374	3	360	15	376	9
424	46	474	40	426	46	474	42
494	30	496	30	496	25	502	31
586	63	560	16	588	63	560	18
617	2	612	10	633	28	633	13
639	45	639	71	642	21	637	65
678	12	679	8	683	9	683	6
711	44	705	45	710	47	705	47
790	6	799	22	798	7	803	24
836	1	827	16	851	2	838	25
863	61	842	16	866	56	853	3
933	8	928	6	938	9	939	1
957	3	954	3	957	7	959	15
970	14	957	9	974	3	964	4
1002	8	994	10	1002	17	985	14
1024	33	1051	40	1029	28	1055	27
1083	8	1093	42	1075	2	1091	48

1122	30	1123	65	1116	35	1129	66
1160	279	1156	109	1161	267	1147	21
1194	3	1169	75	1181	14	1162	158
1240	13	1238	24	1246	13	1244	20
1260	8	1275	12	1257	4	1273	17
1302	15	1305	1	1298	20	1305	4
1328	41	1321	14	1331	38	1322	13
1336	2	1336	1	1337	6	1338	4
1359	3	1352	11	1360	3	1356	9
1391	40	1390	48	1390	42	1392	41
1425	8	1431	5	1429	10	1431	11
1432	8	1434	17	1438	15	1439	15
1438	10	1439	11	1446	12	1444	17
1446	21	1445	22	1451	13	1454	12
1471	173	1477	190	1477	162	1484	191
1600	15	1580	5	1599	28	1579	4
1620	6	1628	8	1620	4	1628	8
1770	285	1768	263	1771	290	1767	258
2729	1195	2713	1177	2745	1227	2704	1229
2964	3	2973	2	2962	1	2971	2
2977	8	2976	12	2975	15	2978	12
2984	4	2987	5	2978	4	2982	7
3008	1	3003	0	3013	0	3004	1
3021	1	3014	2	3023	1	3021	1
3034	1	3035	2	3034	2	3036	2
3063	4	3061	4	3067	3	3069	2
3070	1	3069	1	3072	1	3072	1
3264	133	3228	145	3266	140	3242	126
3302	90	3416	99	3393	84	3413	106
5592	70	5110	,,,	5575	01	5115	100

	II (Met) [N,011,3] comonners calculated at B5L 1 170-511+O(d,p) levels of meory									
[N,OH,S]tgt	[N,OH,S]tgtgg		[N,OH,S]ttggg		gtgt	[N,OH,S]ttggt				
22	1	48	2	22	2	36	3			
44	7	53	3	41	3	46	2			
80	4	82	1	66	7	77	5			
146	10	134	3	140	4	150	2			
152	3	157	0.4	164	14	159	3			
193	2	234	37	188	1	209	20			
214	9	257	7	195	3	237	18			
280	8	289	4	252	2	281	3			
313	23	304	13	306	36	300	8			
341	17	341	10	324	2	333	10			
361	3	362	2	362	13	366	13			
423	27	472	34	426	25	471	29			

Table S15. Vibrational frequencies (cm⁻¹) scaled by 0.975 and IR intensities (kM/mole) for H^+ (Met) [N,OH,S] conformers calculated at B3LYP/6-311+G(d,p) levels of theory^a

496	14	505	24	495	12	508	30
560	33	520	15	561	37	521	14
612	9	609	7	627	85	624	57
631	74	624	82	635	2	632	30
677	17	678	13	683	11	682	8
702	46	697	40	701	50	696	43
784	8	791	20	793	11	794	25
825	2	819	11	837	0.3	835	5
855	27	836	5	857	26	838	4
928	4	921	5	932	7	937	1
955	4	945	9	956	8	948	15
967	15	958	3	972	2	961	8
995	8	992	14	994	18	980	10
1021	28	1049	20	1026	30	1053	8
1070	105	1078	138	1066	49	1076	143
1101	194	1105	121	1094	230	1107	131
1160	96	1150	93	1156	102	1147	44
1196	6	1171	13	1185	15	1153	41
1235	29	1239	33	1242	29	1246	32
1272	4	1279	14	1270	2	1276	9
1300	21	1295	22	1298	19	1291	32
1309	46	1320	12	1309	54	1323	8
1335	1	1339	1	1336	4	1338	5
1357	0	1348	1	1360	1	1352	1
1361	14	1371	5	1362	14	1372	5
1425	11	1430	6	1428	10	1430	11
1431	11	1432	22	1438	15	1436	23
1440	8	1438	13	1443	12	1439	16
1443	19	1442	20	1449	10	1457	8
1485	121	1486	154	1488	115	1489	152
1604	23	1591	28	1600	33	1592	24
1614	24	1625	15	1614	34	1622	33
1818	296	1816	255	1817	295	1816	250
2687	1218	2671	1178	2734	1184	2708	1146
2959	5	2970	6	2958	3	2970	6
2975	9	2975	13	2977	14	2979	8
2986	4	2996	2	2979	3	2992	5
3002	1	2997	1	3005	1	2995	1
3014	1	3015	1	3019	1	3021	1
3037	1	3044	1	3036	2	3043	2
3060	4	3060	4	3068	2	3069	2
3070	0.4	3070	0.4	3073	1	3073	1
3353	87	3333	103	3350	90	3336	97
3407	80	3409	85	3405	81	3405	93
3633	176	3636	178	3633	178	3637	170