Supporting information for:

The role of van der Waals interactions in surface-supported supramolecular networks

Manh-Thuong Nguyen, Carlo A. Pignedoli, Matthias Treier, Roman Fasel and Daniele Passerone

Empa, Swiss Federal Laboratories for Materials Testing and Research, nanotech@surfaces Laboratory, 8600 Dübendorf and 3602 Thun, Switzerland

1. Single molecules on Au(111)

In this section we describe DFT calculations used to determine the preferred adsorption sites for single DATP and PTCDA on Au(111).

To determine the most stable adsorption configurations for the DATP and PTCDEA molecules we performed geometry optimization starting from "adequate" guess configurations. For molecules containing functional groups, the stable positions are usually associated with the positions of these groups with respect to the surface. In the case of fcc(111) surfaces, four high-symmetry positions are usually referred to for describing adsorption geometries. Additionally, due to the high symmetry of Au(111), we can choose some special points as references, namely, *top*, *bridge*, *hcp*-hollow, *fcc*-hollow that correspond to positions directly *on top* of a surface atom, the *middle* between two surface atoms, on top of a second layer atom and on top of a third layer atom, respectively. These high-symmetry adsorption sites are schematically shown in figure S1.

Figure S1. Reference high symmetry adsorption sites for the Au(111) surface.

Figure S2. Geometry of PTCDA on Au(111) obtained with PBE (left) and PBE-D (right) simulations.

Our models are obtained by placing PTCDA on Au(111) such that carboxylic oxygen atoms are located at the top (bridge, hcp, fcc) positions. In the same fashion, DATP is located referring to the position of its N atoms. We optimize these models on Au(111) with PBE and PBE-D. The resulting binding energies are presented in table S1.

		on-top	bridge	hcp	Fcc
DATP / Au(111)	$\Delta E_{\rm DFT} (eV)$	-0.37	-0.29	-0.22	-0.22
DA11 / Au(111)	$\Delta E_{\text{PBE-D}}(eV)$	-2.06	-2.0	-1.96	-1.95
PTCDA / Au(111)	$\Delta E_{\rm DFT} (eV)$	-0.04	-0.03	0.0	-0.01
	$\Delta E_{\text{PBE-D}} (\text{eV})$	-1.92	-1.89	-1.87	-1.87

Table S1. Adsorption site dependence of the binding energy of PTCDA and DATP on Au(111).

We find that for PTCDA and DATP, the on-top position is the most favorable one. PBE and PBE–D geometries of PTCDA on Au are shown in figure S2. The bridge–like geometry of PTCDA in the PBE simulation is not compatible with the experimental suggestion [S1,S2], whereas the PBE–D result is in agreement. In Figure S3a and S3b we plot the projected density of states (PDOS) for the PTCDA and DATP molecules on Au(111) (projection on a subset of atomic orbitals centered on the positions of the atoms of the molecules).

Figure S3a. Projected DOS on the molecular atoms for isolated PTCDA (P) in vacuum (in this case it is the total DOS) and on Au(111).

Figure S3b. Projected DOS on the molecular atoms of isolated DATP (D) in vacuum and on Au(111).

Comparison of gas phase, PBE and PBE-D results shows that molecular characteristics of PTCDA are only slightly modified due to Pauli repulsion. In the case of DATP a strong

modification is found, with the sharpest peak at E = -1.16 eV being strongly reduced. This change is mainly due to nitrogen states (not shown).

2. Homomolecular assemblies

Homomolecular nanostructures for PTCDA and for DATP on Au(111) have been reported in [S3]. The corresponding STM images and structures are shown in figure S4.

Figure S4. STM images of homomolecular networks of PTCDA and DATP on Au(111).

For the simulations of the networks we adopted unit cells containing two molecules. For PTCDA we used a rectangular $12.6 \times 19.5 \text{Å}^2$ unit cell, very close to the experimental one ($12.4 \times 19.7 \text{Å}^2$) [2]. The initial angle between two molecules in a unit cell, about 85° , is almost unchanged after completion of the geometry optimization. Also in the case of DATP networks our simulation cell defined by two vectors **a** and **b** and the angle θ between them, with a=15.7 Å, b=13.2 Å and θ = 78.5° is also close to the experimental one, a=15.8 Å, b=13.0 Å, θ = 78.5°.

3. Electronic properties of the bimolecular superstructure

In the supramolecular assemblies on Au(111), each PTCDA experiences the interaction with the surface and its four nearest neighbors (and, to a lesser extent, with next nearest neighbors due to long range interactions). Its electronic structure is therefore strongly modified with respect to the isolated molecule.

The coordinates of the optimized structure (at the PBE-D level) are given in Table S3. In figures S5 and S6 we show the PDOS on PTCDA and DATP in the bimolecular network in

vacuum and on Au(111).

Figure S5. Projected DOS of PTCDA in PTCDA–DATP network in vacuum (with geometry taken from the relaxed PTCDA–DATP/Au system) and on Au(111).

Figure S6. Projected DOS of DATP in PTCDA–DATP network in vacuum (with geometry taken from the relaxed PTCDA–DATP/Au system) and on Au(111).

The effect of hydrogen bonding on the electronic structure of PTCDA is evident. For example, the sharp peak at about -1.6 eV (figure S3a) nearly disappears (figure S5). This can be understood from the fact that the corresponding states are mostly concentrated on the oxygens. In terms of hydrogen bonding, all carboxylic oxygen atoms gain charge, and this strongly modifies the electronic states and the spatial electronic distribution of the network with respect to the isolated molecule (Figure S7). The electronic structure of DATP is instead somewhat modified by the N–H[…]O hydrogen bonds (the C–H[…]O bonds are less important, see figure S7). Four H atoms in these bonds lose charge, and there is a redistribution of electrons around the ends of the molecules. However, since the states around -2 eV are strongly delocalized over the molecule, the

modifications in this energy region due to hydrogen bonding are less evident than in the case of PTCDA.

Figure S7. Left panel. Atomic sites: two hydrogen bonds in each PTCDA-DATP junction, namely C–O[…]H(–N) and C–O[…]H(–C). Right panel. Charge difference *iso*-surface of the monolayer *in vacuum* at 0.007 e/Å³ with accumulation (orange) and depletion (blue).

Figure S8 shows the electron distribution map in a plane crossing carboxylic oxygen atoms of the monolayer on the substrate.

Figure S8. Electron distribution map within the plane crossing carboxylic oxygen atoms in the monolayer on Au(111) in DFT(left) and PBE-D(right) simulations. The role of van der Waals interactions in making the system planar is evident from the comparison of both diagrams. Indeed, on the right panel (PBE-D), the rotation of the central DATP ring (left panel, PBE) is not present anymore; moreover, PTCDA is fully planar within PBE-D (as experimentally observed) which is reflected in the arrangement of the bonding charge.

In the PBE simulation unphysical effects like the bridge-like shape of PTCDA and the rotation of the DATP central ring are present, which are amended when including vdW corrections (see Figure S8).

Finally, concerning the STM simulations described in the main text, we show in Figure S9 the theoretical image within the Tersoff-Hamann approximation for V_{bias} =+0.5 V.

Figure S9. Simulated STM image at a bias of +0.5 V, without Gaussian smearing.

The shape of the LUMO from the gas-phase PTCDA is evident and correspond to the experimental observation that such features are conserved also in the adsorbed supramolecular phase.

As a support for Fig. 3 of the main manuscript, we report in Table S2 the geometrical parameters (width, peak height) for all biases, and we note again the overall very good correspondence between theory at the PBE-D level and experiment.

Bias (V)	Experiment		PBE		PBE–D	
	P/D width	P/D height	P/D width	P/D height	P/D width	P/D height
-1.8	1.31	1.23	0.85	0.91	1.34	1.24
-1.0	1.36	1.42	0.82	0.90	1.33	1.30
+0.2	1.51	1.93	1.71	2.16	1.66	1.75
+0.5	1.72	1.24	1.62	1.85	1.69	1.80

Table S2. Comparison between experimental and computed STM images at different biases (see Fig. 3 in the main manuscript). The ratios between the signal for PTCDA (P) and for DATP (D) are shown both for the full width at half maximum (P/D width)and for the height (P/D height)of the topography profiles.

References:

- - -

[S1] P. Fenter, F. Schreiber and L. Zhou, Phys. Rev. B 56 (1997) 3046.

[S2] T. Schmitz-Hübsch, T. Fritz, F. Sellam, R. Staub, and K. Leo, *Phys. Rev. B* 55 (1997) 7972.

[S3] M. Treier, M. T. Nguyen, N. V. Richardson, C. A. Pignedoli, D. Passerone, and R. Fasel, Nano Lett. 9, 126 (2009).

Table S3. Coordinates of PBE-D optimized PTCDA–DATP network on Au(111), surface unit cell 20.62469×17.86152 \AA^2

31	L4		
Coord	inate		
Au	0.8606221165	1.4805583829	9.4930485137
Au	0.8606221165	4.4574939358	9.4930485137
Au	0.8606221165	7.4344294887	9.4930485137
Au	0.8606221165	10.4113650416	9.4930485137
Au	0.8606221165	13.3882004756	9.4930485137
Au	0.8606221165	16.3651360285	9.4930485137
Au	3.4387840666	2.9690261593	9.4930485137
Au	3.4387840666	5.9459617122	9.4930485137
Au	3.4387840666	8.9228972652	9.4930485137
Au	3.4387840666	-0.0079093936	9.4930485137
Au	3.4387840666	11.8997326992	9.4930485137
Au	3.4387840666	14.8766682521	9.4930485137
Au	6.0168458977	1.4805583829	9.4930485137
Au	6.0168458977	4.4574939358	9.4930485137
Au	6.0168458977	7.4344294887	9.4930485137
Au	6.0168458977	10.4113650416	9.4930485137
Au	6.0168458977	13.3882004756	9.4930485137
Au	6.0168458977	16.3651360285	9.4930485137
Au	8.5949077289	2.9690261593	9.4930485137
Au	8.5949077289	5.9459617122	9.4930485137
Au	8.5949077289	8.9228972652	9.4930485137
Au	8.5949077289	-0.0079093936	9.4930485137
Au	8.5949077289	11.8997326992	9.4930485137
Au	8.5949077289	14.8766682521	9.4930485137
Au	11.1729695600	1.4805583829	9.4930485137
Au	11.1729695600	4.4574939358	9.4930485137
Au	11.1729695600	7.4344294887	9.4930485137
Au	11.1729695600	10.4113650416	9.4930485137
Au	11.1729695600	13.3882004756	9.4930485137
Au	11.1729695600	16.3651360285	9.4930485137
Au	13.7511315101	2.9690261593	9.4930485137
Au	13.7511315101	5.9459617122	9.4930485137
Au	13.7511315101	8.9228972652	9.4930485137
Au	13.7511315101	-0.0079093936	9.4930485137
Au	13.7511315101	11.8997326992	9.4930485137
Au	13.7511315101	14.8766682521	9.4930485137
Au	16.3291933413	1.4805583829	9.4930485137

Au	16.3291933413	4.4574939358	9.4930485137
Au	16.3291933413	7.4344294887	9.4930485137
Au	16.3291933413	10.4113650416	9.4930485137
Au	16.3291933413	13.3882004756	9.4930485137
Au	16.3291933413	16.3651360285	9.4930485137
Au	18.9072551724	2.9690261593	9.4930485137
Au	18,9072551724	5.9459617122	9,4930485137
Au	18.9072551724	8.9228972652	9.4930485137
Au	18.9072551724	-0.0079093936	9.4930485137
Au	18,9072551724	11.8997326992	9.4930485137
Au	18.9072551724	14.8766682521	9.4930485137
A11	2.5793633769	1.4805583829	11,9237353151
Au	2.5793633769	4.4574939358	11.9237353151
Au	2.5793633769	7.4344294887	11.9237353151
A11	2.5793633769	10.4113650416	11,9237353151
Au	2.5793633769	13.3882004756	11.9237353151
A11	2.5793633769	16.3651360285	11,9237353151
Au	5.1574252081	2,9690261593	11,9237353151
Au	5.1574252081	5,9459617122	11,9237353151
A11	5.1574252081	8.9228972652	11,9237353151
Au	5.1574252081	-0.0079093936	11,9237353151
A11	5 1574252081	11 8997326992	11 9237353151
A11	5 1574252081	14 8766682521	11 9237353151
Au	7.7355871581	1.4805583829	11,9237353151
A11	7 7355871581	4 4574939358	11 9237353151
Au	7.7355871581	7,4344294887	11,9237353151
Au	7.7355871581	10.4113650416	11,9237353151
A11	7 7355871581	13 3882004756	11 9237353151
Au	7.7355871581	16.3651360285	11,9237353151
Au	10.3136489893	2.9690261593	11.9237353151
A11	10.3136489893	5.9459617122	11,9237353151
Au	10.3136489893	8,9228972652	11,9237353151
A11	10.3136489893	-0.0079093936	11,9237353151
Au	10.3136489893	11.8997326992	11.9237353151
Au	10.3136489893	14.8766682521	11.9237353151
Au	12.8917108205	1,4805583829	11,9237353151
Au	12.8917108205	4.4574939358	11.9237353151
A11	12.8917108205	7.4344294887	11,9237353151
Au	12.8917108205	10.4113650416	11.9237353151
Au	12.8917108205	13.3882004756	11.9237353151
Au	12.8917108205	16.3651360285	11.9237353151
Au	15.4697726516	2.9690261593	11.9237353151
Au	15.4697726516	5.9459617122	11.9237353151
Au	15.4697726516	8.9228972652	11.9237353151
Au	15.4697726516	-0.0079093936	11.9237353151
Au	15.4697726516	11.8997326992	11.9237353151
Au	15.4697726516	14.8766682521	11.9237353151
Au	18.0479346017	1.4805583829	11.9237353151
Au	18.0479346017	4.4574939358	11.9237353151
Au	18.0479346017	7.4344294887	11.9237353151
Au	18.0479346017	10.4113650416	11.9237353151
Au	18.0479346017	13.3882004756	11.9237353151
Au	18.0479346017	16.3651360285	11.9237353151
Au	20.6259964328	2.9690261593	11.9237353151
Au	20.6259964328	5.9459617122	11.9237353151
Au	20.6259964328	8.9228972652	11.9237353151
Au	20.6259964328	-0.0079093936	11.9237353151
Au	20.6259964328	11.8997326992	11.9237353151

Au	20.6259964328	14.8766682521	11.9237353151
Au	1.7200428062	2.9690261593	14.3544221165
Au	1.7200428062	5.9459617122	14.3544221165
Au	1.7200428062	8.9228972652	14.3544221165
Au	1.7200428062	-0.0079093936	14.3544221165
Au	1.7200428062	11.8997326992	14.3544221165
Au	1.7200428062	14.8766682521	14.3544221165
Au	4.2981046373	1.4805583829	14.3544221165
Au	4.2981046373	4.4574939358	14.3544221165
Au	4.2981046373	7.4344294887	14.3544221165
Au	4.2981046373	10.4113650416	14.3544221165
Au	4.2981046373	13.3882004756	14.3544221165
Au	4.2981046373	16.3651360285	14.3544221165
Au	6.8761664685	2.9690261593	14.3544221165
Au	6.8761664685	5.9459617122	14.3544221165
Au	6.8761664685	8.9228972652	14.3544221165
Au	6.8761664685	-0.0079093936	14.3544221165
Au	6.8761664685	11.8997326992	14.3544221165
Au	6.8761664685	14.8766682521	14.3544221165
Au	9.4543284185	1.4805583829	14.3544221165
Au	9.4543284185	4.4574939358	14.3544221165
Au	9.4543284185	7.4344294887	14.3544221165
Au	9.4543284185	10.4113650416	14.3544221165
Au	9.4543284185	13.3882004756	14.3544221165
Au	9.4543284185	16.3651360285	14.3544221165
Au	12.0323902497	2.9690261593	14.3544221165
Au	12.0323902497	5.9459617122	14.3544221165
Au	12.0323902497	8.9228972652	14.3544221165
Au	12.0323902497	-0.0079093936	14.3544221165
Au	12.0323902497	11.8997326992	14.3544221165
Au	12.0323902497	14.8766682521	14.3544221165
Au	14.6104520809	1.4805583829	14.3544221165
Au	14.6104520809	4.4574939358	14.3544221165
Au	14.6104520809	7.4344294887	14.3544221165
Au	14.6104520809	10.4113650416	14.3544221165
Au	14.6104520809	13.3882004756	14.3544221165
Au	14.6104520809	16.3651360285	14.3544221165
Au	17.1885139120	2.9690261593	14.3544221165
Au	17.1885139120	5.9459617122	14.3544221165
Au	17.1885139120	8.9228972652	14.3544221165
Au	17.1885139120	-0.0079093936	14.3544221165
Au	17.1885139120	11.8997326992	14.3544221165
Au	17.1885139120	14.8766682521	14.3544221165
Au	19.7666758621	1.4805583829	14.3544221165
Au	19.7666758621	4.4574939358	14.3544221165
Au	19.7666758621	7.4344294887	14.3544221165
Au	19.7666758621	10.4113650416	14.3544221165
Au	19.7666758621	13.3882004756	14.3544221165
Au	19.7666758621	16.3651360285	14.3544221165
Au	0.7000687403	1.3596070188	16.8450958903
Au	0.7095855810	4.2980492638	16.8295629572
Au	0.7217019654	7.2756314605	16.7872150405
Au	0.6887350397	10.3021802654	16.7824161909
Au	0.7174823641	13.3166568173	16.7851428249
Au	0.6998036657	16.2846111728	16.8332771745
Au	3.2677713046	2.8220820706	16.8484216208
Au	3.2905447948	5.7757712473	16.8112356484
Au	3.3006530192	8.7756750707	16.7720665112

Au	3.2636775075	-0.1120862486	16.8447248633
Au	3.3010319781	11.8048362961	16.7691573698
Au	3.2846005728	14.8027220596	16.8069640968
Au	5.8203320254	1.3576820671	16.8263369527
Au	5.8427054072	4.2940316572	16.8341092692
Au	5.8776807926	7.2616171894	16.7988689026
Au	5.8784788208	10.2711676519	16.8403978951
Au	5.8808991122	13.2968387072	16.7926603867
Au	5.8455186205	16.2821847834	16.8194581150
Au	8,4189205832	2.8407717662	16.8137179131
Au	8,4304171382	5.7949071035	16.8085956417
A11	8 4272416720	8 7922006274	16 8357544942
A11	8 4263645955	-0 1170303339	16 8055307071
A11	8 4291275372	11 7575381646	16 8290424889
Δ11	8 4356418592	14 7738234642	16 8009037498
Δ11	11 0435740520	1 3648805199	16 7836642629
Δ11	11 0341194631	4 3392932696	16 7984770072
Δu	10 9999979391	7 3186171138	16 7915204799
Δu	11 0000637250	10 2789446897	16 8411039428
Λu	10 9983248111	13 2422324146	16 7940591094
Au Au	11 0272440604	16 2255665965	16 7027508851
Au Au	12 6275226705	2 9457772406	16 0010060455
Au	12 6071611470	Z.045///3400 E 0007047006	16 7044020067
Au Au	12 5758587507	9 9150090019	16 9266797409
Au	12 625220201	0 1274420105	16 0010206012
Au	12 6722401044		16 0010290912
Au	12 5062050424	14 7441019620	16 0065254000
Au	16 1021070000	1 2565259024	16 0202405072
Au	10.10310/0000	1.3505250024	16 00000460973
Au	16 100600000	4.2990807818	16 7724000454
Au	16.1886808895	1.2/00302324	16.7/34909454
Au	16.1/44/3/500	10.2912626418	16.7828381432
Au	16.1859970953	13.3082338271	16.//9/101999
Au	10.1819230297	16.2779132848	16.82/4/29991
Au	18./5388511/6		16.8462940049
Au	18.7641136008	5.7647601645	16.8061769264
Au	18.7658691502	8.7626437851	16./6/41///4
Au	18.7493947786	-0.0983836893	16.8468065241
Au	18.7675461006	11.8345635239	16.7679577585
Au	18./59483540/	14.8253261481	16.8092663063
Au	2.40/1402142	1.29/1830520	19.5200881301
Au	2.4115891538	4.22166/00/0	19.4681139109
Au	2.40/39/9032	/.1695135803	19.3301894730
Au	2.4024080814	10.2297969500	19.186103/466
Au	2.40/4044/54	13.2802382340	19.3209923011
Au -	2.4125608265	16.2335678719	19.4615245364
Au	4.9694723968	2.7584733591	19.5281283892
Au -	4.9859807192	5.68/15///83	19.4237830363
Au	4.9906173636	8.6430241823	19.2568448363
Au	4.9704397145	-0.1667612035	19.5090023033
Au	4.9962981883	11.7804432695	19.2420642694
Au	4.9886506238	14.7527181073	19.3686402895
Au	/.5153481567	1.3022719351	19.3/47514938
Au	7.5347557674	4.2504332428	19.4363357965
Au	7.5739142568	7.2126823088	19.3994457398
Au	7.6590765412	10.2099963522	19.4234140070
Au	7.5827478751	13.2273761949	19.3616191423
Au	7.5398526227	16.2083573810	19.3803625689
Au	10.1358341427	2.7811602122	19.2797952564

Au	10.1403966626	5.7392222055	19.3248430224
Au	10.1682490269	8,6972182586	19,4243589409
Au	10.1493490704	-0.1705086952	19.2690181373
Au	10.1646517681	11.7593783927	19.4271445598
Διι	10 1513077852	14 7288641939	19 3094954412
Λιι	12 7787253244	1 3023776851	19 3034030733
Au	12.7707233244	1.3023770031	10 2477007211
Au	12.7540350350	4.2401404493	19.34//98/311
Au	12./394020815	1.2258297514	19.313/081906
Au	12.6/62011280	10.2350/080/0	19.4160248592
Au	12.7340002701	13.240/9828/8	19.3462953202
Au	12.7648873756	16.2172148387	19.3588245141
Au	15.3333239326	2.7650997308	19.5013922812
Au	15.3203663182	5.7016673159	19.3661300477
Au	15.3445983390	8.6738547712	19.2309450727
Au	15.3368593483	-0.1606131452	19.5064754208
Au	15.3319735555	11.7880282860	19.2268392460
Au	15.3235150744	14.7614634882	19.3738797319
Au	17.8900046174	1.3036171166	19.5242047284
Au	17.8867324037	4.2364470752	19.4644252147
Au	17.9192188019	7.1934701974	19.3148201710
A11	17 9660757949	10 2507881763	19 1772138258
Διι	17 9195093404	13 2773431252	19 3211822410
Λιι	17 8903994567	16 2316014653	19 4661262157
Au	20 /5005994507	2 7610102607	19.4001202137
Au			10 2064205720
Au	20.4640628351	5.6900515860	19.3964385780
Au	20.4897108126	8.6/48//149/	19.2824525078
Au	20.4587710450	-0.1628068862	19.4833697960
Au	20.4915954316	11.8026508657	19.3160033683
Au	20.4669913884	14.7700529182	19.4118831324
C	0.6420554942	11.4092249947	22.4064034736
С	19.8692578692	11.4090389974	22.4015986140
С	3.6289349131	11.4204060688	22.2036047025
С	16.8812261117	11.4192508149	22.1890290317
С	5.0244665785	11.4330432968	22.1371195235
С	15.4855169435	11.4318578239	22.1255044385
С	15.4833107470	9.0132335112	22.1398562630
С	5.0285463124	9.0154835882	22.1830207491
C	16.8785029408	9.0242256278	22.2130389081
C	3 6335151640	9 0253891390	22 2479322540
C	19 8699906709	9 0293144980	22 2335223995
C	0 6434206149	9 0296973743	22 2390644909
C	1 3978781251	10 2205542434	22.2350011505
C	1/ 75/2620022	10 2221565282	22.3130002311
C	17.7342030923	10.2231303203	22.1231393000
C	17.0323399013	10.2210803504	22.2303/35045
C	19.1139/18162	10.2200552646	22.3093048883
Ċ	2.8792166820	10.2221183327	22.2598477976
C	5./549543524	10.2248005245	22.1451619592
H	5.5629408951	12.3818245498	22.1330181618
H	14.9469784761	12.3807170797	22.1327768075
H	19.3704365310	12.3738156809	22.4694356619
H	1.1397516345	12.3744303383	22.4758239516
Н	17.3878104922	12.3831741401	22.1826140440
Н	3.1217210193	12.3838033074	22.1891505819
Н	3.1315873215	8.0603127862	22.2893234498
Н	17.3807941042	8.0588952485	22.2490195248
Н	1.1406533410	8.0649836928	22.1570238492
Н	19.3733745842	8.0642346588	22.1528917681
Н	14.9420391354	8.0666446252	22.1616672531

Н	5.5709346720	8.0697809243	22.2108174249
Н	7.6193373690	9.3668383384	22.3076891923
Н	12.8910042224	9.3577857560	22.2751270592
Н	12.8943243921	11.0875524573	22.2834970708
Н	7.6153880070	11.0905774663	22.2843370208
Ν	13.3711525296	10.2236405867	22.0231199715
Ν	7.1408451998	10.2244800231	22.0245362432
С	9.0178124126	2.1161693373	22.5235245867
С	11.5144196860	2.1155264777	22.4923552037
С	9.0214341940	14.2060953466	22.5930624514
С	11.5055323749	14.2058936107	22.5536673239
С	9.0367541877	15.6679194046	22.5324678018
С	11.4914606372	15.6673556352	22.5216118912
С	10.2664630363	2.8197616626	22.5279069769
С	12.7040953787	2.8664189768	22.4107383641
С	7.8260423798	2.8680771170	22.5027076064
С	12.6958877858	16.3722654755	22.4256195340
С	7.8325627875	16.3738236619	22.4427147982
С	10.2645684208	16.3784242535	22.5340082237
С	7.8268807327	17.7698825276	22.4302272291
С	12.7032939637	17.7683500869	22.4177967077
С	10.2654048311	17.8169025188	22.5141971144
С	11.5140087082	18.5202352969	22.4921382620
С	9.0173516296	18.5210247962	22.5032733237
С	10.2670729802	4.2584666788	22.5569948514
С	7.8325498206	4.2626613564	22.5357673218
С	12.6980169618	4.2620833921	22.4100127519
С	11.4949295191	4.9685824945	22.5154616950
С	9.0391708862	4.9683364587	22.5925108224
С	11.5074951231	6.4276856921	22.5165221668
С	9.0249096276	6.4285106435	22.6478540158
Н	6.8615581340	2.3682737217	22.4630005480
Н	13.6667844428	2.3666457694	22.3377479153
Н	13.6307579118	15.8160314722	22.3801031082
Η	6.8965192586	15.8184844356	22.4098040138
Н	13.6672755405	18.2667083383	22.3530272096
Η	6.8634504174	18.2698144423	22.3690202056
Η	6.8963951812	4.8184493016	22.5360165861
Η	13.6327965937	4.8168630305	22.3486980905
0	12.5022663834	13.4963872240	22.5187386777
0	8.0255382511	13.4965575424	22.6148417386
0	10.2651268336	13.5569520227	22.6333836663
0	10.2716588845	7.0738318544	22.6268676335
0	8.0306801520	7.1406437929	22.7120977960
0	12.5006731777	7.1412227116	22.4216499917