Electronic Supplementary Information

³¹P solid-state NMR studies of the short range order in phosphorus-selenium glasses

A. Bytchkov, F. Fayon, D. Massiot, L. Hennet and D. L. Price

Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), 1D Av. Recherche Scientifique, 45071 Orléans Cedex 2, France, and Université d'Orléans, Faculté des Sciences, Av. Parc Floral, 45067 Orléans Cedex 2, France

Content:

ESI Figure 1: Glass densities in the two glass-forming regions of the P-Se system.

ESI Figure 2: Measured glass transition temperatures of the P-Se system. The glass with 67 at.% of P showed two distinct T_g 's, the lower one being similar to Se-rich glasses.

ESI figure 3: 2D DQ-SQ through-bond MAS correlation spectrum of crystalline α -P₄Se₃ recorded using the refocused INADEQUATE at a spinning frequency of 26 kHz with a DQ excitation and reconversion times of 0.96 ms. The projection along the SQ dimension (black) and conventional 1D MAS spectrum (blue) are shown above the 2D spectrum.

ESI figure 4: 2D DQ-SQ through-bond MAS correlation spectrum of crystalline β -P₄Se₃ recorded using the refocused INADEQUATE at a spinning frequency of 12 kHz with a DQ excitation/reconversion time of 2.0 ms. The projection along the SQ dimension is shown above the 2D spectrum.

ESI figure 5: Experimental (black) ³¹P MAS spectra of Se-rich phosphorus selenium glasses and their best fits (dashed red) including spinning sidebands, with the resonances of $_{2/2}$ SeP-PSe_{2/2} (green), P₄Se₃ (violet), P(Se_{1/2})₃ (blue) and Se=P(Se_{1/2})₃ (grey) structural units.

ESI figure 6: Experimental (black) ³¹P MAS spectra of P-rich phosphorus selenium glasses and their best fits (dashed red) with the resonances assigned to of P_4Se_3 (violet), amorphous red-P like network and the two unidentified peaks.

ESI Figure 1: Glass densities in the two glass-forming regions of the P-Se system.

ESI Figure 2: Measured glass transition temperatures of the P-Se system. The glass with 67 at. % of P showed two distinct T_g's, the lower one being similar to Se-rich glasses.

ESI figure 3: 2D DQ-SQ through-bond MAS correlation spectrum of crystalline α -P₄Se₃ recorded using the refocused INADEQUATE at a spinning frequency of 26 kHz with a DQ excitation and reconversion times of 0.96 ms. The projection along the SQ dimension (black) and conventional 1D MAS spectrum (blue) are shown above the 2D spectrum.

ESI figure 4: 2D DQ-SQ through-bond MAS correlation spectrum of crystalline β -P₄Se₃ recorded using the refocused INADEQUATE at a spinning frequency of 12 kHz with a DQ excitation/reconversion time of 2.0 ms. The projection along the SQ dimension is shown above the 2D spectrum.

ESI figure 5: Experimental (black) ³¹P MAS spectra of Se-rich phosphorus selenium glasses and their best fits (dashed red) including spinning sidebands, with the resonances of $_{2/2}$ SeP-PSe_{2/2} (green), P₄Se₃ (violet), P(Se_{1/2})₃ (blue) and Se=P(Se_{1/2})₃ (grey) structural units.