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Details of the computation and further discussion of the pulse parameter

dependence of the control pulse are given in this supplementary document.

1 Potential Energy Surfaces

The two lowest NO2
2A′ surfaces, VX(R) and VA(R), used in the present

study is the same as that calculated in a previous study [1]. They are ob-

tained as interpolated surfaces over a dense grid of bond lengths and bond

angles with the state averaged full valence complete active space self con-

sistent field (CASSCF) method as implemented in the MOLPRO quantum

chemistry package [2, 3, 4], using Dunning’s correlation consistent polarized

triple zeta (cc-pVTZ) basis set [5]. Adiabatic dipole moments in the direc-

tion perpendicular to bond angle bisector is also computed together with the

potential energy surfaces. The computed surfaces were diabatized with the

phenomenological method of Hirsch et al. [6]. Observing that the diabatic
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states collectively coincide with the adiabatic states at C2v geometry, and

that the dipole moment component perpendicular to the bond angle bisector

is zero at C2v geometry and is larger away from that geometry, smallness of

this dipole moment component is interpreted to characterize how diabatic

the system is. Transformation angle, and hence the relevant transforma-

tion matrix, from adiabatic to diabatic representation is obtained through

minimizing the diagonal elements of the dipole moment matrix at each ge-

ometry. Nonadiabatic coupling elements for the representation obtained this

way is confirmed to be small through computation at several representative

geometries. The surfaces are thus obtained at rather low cost, but through

comparison with other higher level surfaces in the literature [7, 8] we deem

adequate for describing the dynamics around the conical intersection.

2 Vibrational Wavepacket Propagation

Vibrational wave functions associated with the two coupled electronic states

were represented on a discretized spatial grid in Jacobi coordinates. Molec-

ular orientation is frozen in space because of the ultrashort time span of

the conical intersection dynamics. Time dependent Schrödinger equations

for the two vibrational wave functions were cast in matrix form and nu-

merically solved with the split operator short time propagator method [9].

Nonadiabatic interaction is handled through diagonalization of the potential

energy matrix in the diabatic representation [10]. Kinetic energy terms are

handled with the usual FFT grid method [11] for length coordinates and an

FFT grid method devised by Dateo and Metiu for the angle coordinate [12].

The adiabatic to diabatic transformation matrix computed to diabatize the

potential surfaces were used in reverse to obtain adiabatic observables from

the diabatic results. As well as the ground and excited state populations,

PX and PA, population P ∗ excited by the pump pulse but excluding the

effect of deexcitation by the conical intersection is computed by projecting
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out the initial eigenfunction of the electronic ground state left unexcited by

the pump pulse from the total vibrational wave function.

3 Control Pulse Parameter Dependence
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Figure 1: Pulse frequency ω and pulse width w dependence of population

ratio left in the excited state PA/P ∗ after first passage of the conical inter-

section region.

The effect of varying the parameters of the control pulse is summarized in

Figure 1, in the form of dependence of the ratio of excited state population

PA to population that was initially excited by the pump pulse P ∗ as a

function of control pulse energy ω and pulse width w, at time t = 16 fs.

Intensity is fixed at I = 3.2 × 1013 W cm−2, center of the pulse t0 = 8 fs,

and phase φ = 0 as in the main text.

The time t = 16 corresponds to an instant when the system excited by

the pump pulse have finished its first passage through the conical intersec-

tion region but before the time it returns to the conical intersection region.

Increase in the ratio PA/P ∗ at this time, compared to PA/P ∗ = 0.3 for the
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case without control pulse, indicate the effectiveness of the control pulse in

deforming the conical intersection and suppressing transition through it.

For very low energy pulses ω < 0.16 eV, a wider pulse width enhances the

suppression of population transfer through the conical intersection. The pe-

riod of a single cycle (∼ 40 fs) is long enough that during the time wavepacket

is passing the conical intersection region, −μ12(RX)E(t) remains positive.

The field amplitude stays largest for the smallest frequencies. Increase in

the pulse width causes the control effect to the conical intersection to begin

earlier and last longer.

Near 0.22 eV, however, the trend is reversed. For ω = 0.22 eV, the

pulse includes just one half of a cycle during the time the wavepacket cross

the conical intersection, and as the pulse width is made larger or frequency

higher, the more of the region of field amplitude close to zero enters the

time window of wavepacket crossing the conical intersection region. This

suppresses the deformation of the conical intersection. As the control pulse

energy is made even larger, the field shape begins to include more and more

oscillations and the effect the deformation of conical intersection has on

the population transfer cancels out. Deformation of the conical intersection

causes a significant effect on population transfer only when the period of the

control pulse is comparable to the time scale of population transfer.
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