Supporting information:

Manipulating the Growth of Aqueous Semiconductor Nanocrystals through

Amine-Promoted Kinetic Process

Jishu Han, Hao Zhang^{*}, Haizhu Sun, Ding Zhou and Bai Yang

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry,

Jilin University, Changchun 130012, P. R. China

E-mail: hao_zhang@jlu.edu.cn

Figure S1. Temporal size evolution of MPA-stabilized CdTe NCs at 100° C simultaneously in the presence of NH₃ (upper panel) and N₂H₄ (lower panel). The diameter of NCs was derived from the 1s-1s electronic transition in the absorption spectra. Corresponding UV-vis absorption spectra and PL spectra were indicated in Figure 1b and d.

Figure S2. XPS Cd 3d, Te 3d, S 2p, and N 1s spectra of CdTe NCs prepared by refluxing the precursors at 100°C for 30 min in the presence of 0.875 mol/L N₂H₄.

Table S1. The calculated Cd/Te/S/N molar ratio of NCs prepared by refluxing the precursors at 100°C in the absence and in the presence of 0.875mol/L N₂H₄, which was determined by XPS measurement. It confirmed that N₂H₄ could coordinate with NCs, thus decreasing the amount of adsorbed MPA.

	Cd	Te	S	Ν
N ₂ H ₄ -free	1	0.324	2.195	0
0.875mol/L N ₂ H ₄	1	0.094	1.679	0.448

Table S2. Comparison of the XRD (111) peak of MPA-stabilized CdTe NCs. NCs were respectively prepared by the storage of precursors at room temperature in the presence of 12mol/L N_2H_4 , and by conventional reflux at 100°C in the absence of N_2H_4 . The (111) peak position of bulk CdTe and CdS crystal was 24.03 and 26.53, respectively.

XRD (111) peak of CdTe NCs				
Emission peak position (nm)	Hydrazine-promoted growth (degree)	Reflux-promoted growth (degree)		
525	24.24	24.27		
566	24.14	24.36		
597	24.14	24.54		
630	24.14	25.11		

Table S3. The average size and size distribution of CdTe NCs with different emission colors that prepared by N_2H_4 -promoted growth at room temperature, which was calculated by TEM measurement. Corresponding TEM images were indicated in Figure 3.

Emission peak position (nm)	Average size (nm)	Size distribution
525	3.5	(%) 31.5
<u> </u>	<u>3.8</u> 4.5	32.1 21.9
630	5.0	26.2

Table S4. Comparison of the zeta potential of MPA-stabilized CdTe NCs in the absence and in the presence of N_2H_4 . NCs were prepared by the storage of precursors at room temperature for 3 hours. One could see from the zeta potential measurement that the addition of N_2H_4 significantly decreased the electrostatic repulsion between NCs and Cd monomers.

	zeta potential (mV)		
N ₂ H ₄ -free	-50		
6mol/L N ₂ H ₄	-26		
12mol/L N ₂ H ₄	-2.7		

Table S5. Stepwise formation constants for Cd²⁺ with MPA, NH₃, and N₂H₄. Values were taken from *Mar. Chem.*, 2000, **70**, 181-189 and *J. Chem. Soc. Dalton Trans.*, 1979, 731-734.

	log K
$Cd^{2+}+MPA^{2-}\rightarrow Cd(MPA)$	8.8
$Cd(MPA)+MPA^{2}\rightarrow Cd(MPA)_{2}^{2}$	4.8
$Cd^{2+}+NH_3 \rightarrow Cd(NH_3)^{2+}$	2.65
$Cd^{2+}+N_2H_4 \rightarrow Cd(N_2H_4)^{2+}$	2.25

Figure S3. Temporal evolution of the UV-vis peak of MPA-stabilized CdTe NCs at room temperature in the presence of $12 \text{mol/L N}_2\text{H}_4$. The molar ratio of Cd/MPA/Te was fixed at 1:2.4:0.2, whereas the concentration of Cd²⁺ was varied from 0.5 to 5mmol/L.

Figure S4. Temporal evolution of the UV-vis peak of TG-stabilized CdTe NCs at room temperature in the presence of 12mol/L N_2H_4 . The molar ratio of Cd/TG/Te was fixed at 1:2.4:0.2, whereas the concentration of Cd²⁺ was 0.5mmol/L.

Figure S5. Comparison of the UV-vis absorption spectra of MPA-stabilized ZnS, CdS, $Zn_xCd_{1-x}S$, and $CdSe_yTe_{1-y}$ NCs prepared by storing the precursors at room temperature in the absence, and in the presence of 12.5mol/L NH₃ or N₂H₄. The storage duration was 48 hours for ZnS, and 40 hours for CdS, $Zn_xCd_{1-x}S$, and CdSe_yTe_{1-y}. The molar ratio of metal/MPA/chalcogenide was fixed at 1:2.4:0.2, whereas the concentration of Cd²⁺ was 0.5mmol/L. For Zn_xCd_{1-x}S and CdSe_yTe_{1-y}, the molar ratio of Zn/Cd and Se/Te was 1:1.

