Supporting Information

Chirality transition in the epoxidation of (-)-α-pinene and successive hydrolysis studied by Raman optical activity and DFT

Shi Qiu, Guanna Li, Peng Liu, Changhao Wang, Zhaochi Feng * and Can ${\rm Li}^{\ast}$

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian, 116023, China, and Graduate University of Chinese

Academy of Sciences, Beijing, 100049, China

E-mail: zcfeng@dicp.ac.cn; canli@dicp.ac.cn

*To whom correspondence should be addressed.

+86-411-84379303; +86-411-84379070; +86-411-84694447 (Fax)

Synthesis of α-pinene oxide

Preparation of the catalyst ZnAl-[Salen(Mn)] and the catalytic epoxidation reaction were similar with the method of Anderson.^{S1} Catalyst characterization was shown by XRD and IR spectra. 0.6mL (-)- α -pinene (dissolved in 20mL toluene), 1.05mL pivalaldehyde and 0.100 g of ZnAl-[Salen(Mn)] were stirred in a twin-necked round-bottom flask equipped with condenser at room temperature (298 K) while bubbling molecular oxygen at atmospheric pressure. After completion of the reaction, the catalyst was filtered off. Evaporation of the toluene solvent on a rotary evaporator gave an oily residue that was distilled through a vacuum-jacketed column, yielding α -pinene oxide as colorless oil, b.p. 89–90° (28 mm.).The purity of the product was confirmed by GC-MS (Agilent 6890N GC/5973 MS detector), and ¹H NMR (Bruker DRX-400).

Visualization of vibrational modes and atomic contributions to the ROA signals The pyVib2 program^{S2, S3} is used for the analysis of the vibrational modes of Raman as well as the ROA spectra from Gaussian outputs. For vibrational normal modes, the size and the direction of the nuclear motion for each vibrational mode in polyatomic chiral molecules are represented by a sphere centered on the nucleus. The radius of the sphere relies on the magnitude of the nuclear motion and the hemisphere shaded by yellow or blue color indicates the direction of the nuclear motion in the vibration. It is easy to find the contribution of single nuclei to the vibrational energy of a normal mode and powerful to ascertain affinities between vibrational modes for molecules with similar structure. In particular, the analysis of scattering cross sections can be done using modules such as atomic contribution patterns (ACPs) as either 2D or 3D pictorial representations, respectively. One can read the Hessian, the gradients of the various polarizability tensors involved in Raman and ROA calculations which are capable of evaluating the contribution of each atom to the calculated Raman scattered intensities. Sphere in ACPs with yellow color on each nucleus represents negative contribution for the ROA intensity and red for positive. With this tool we can visualize the generation of ROA and analyze the vibrational spectra and hope to get practically understanding of the vibrational modes in these chiral molecules.

References

S1. Bhattacharjee, S., Dines, T. J. and Anderson, J. A., J. Catal., 2004, 225, 398-407.

S2. Hug, W., Chem. Phys., 2001, 264, 53-69.

S3. Zerara, M., J. Comput. Chem., 2008, 29, 306-311.

Figure S1. XRD (left) and IR (right) spectra of catalyst ZnAl-[Salen(Mn)] and its

precursors

Figure S2. ¹H NMR spectrum of α -pinene oxide (in CDCl₃)

¹H NMR spectrum shows: δ 0.94, 1.29, and 1.35 (3 s, 9H, 3CH₃), 1.60–2.03 (m, 6H, 2CH₂ and 2CH), 3.07 (m, 1H, CHOC)

Figure S3. The computational simulation of Raman and ROA Spectra of cis - α -pinene oxide (The Raman and ROA Spectra were plotted with a Lorentzian band shape with a full width at half-maximum height of 7 cm⁻¹)

Figure S4. (-)- α -pinene ACP pictorial representation of mode 48 (left) and mode 51

(right) (the position of atoms C10 is labeled)

Figure S5a. Similar vibrational normal modes (upper) and their ACPs (bottom) for (-)-α-pinene (left column), α-pinene oxide (middle column) and (-)-pinanediol (right column)

Figure S5b. (Continued)

Figure S5c. (Continued)

Figure S5d. (Continued)

Table S1. Mulliken atomic charges distribution (in electron units, e) for three

entry	α-pinene	α-pinene oxide	2,3-(-)- pinapediol	△(2-1)	△(3-1)	△(3-2)
	(1)	(2)	(3)			
1C	2.377816	2.113743	2.175336	-0.26407	-0.20248	0.06159
2C	-0.681953	-0.700664	-0.548981	-0.01871	0.13297	0.15168
3C	0.773799	1.443122	1.723701	0.66932	0.9499	0.28058
4C	0.74696	0.63749	0.65663	-0.10947	-0.09034	0.01913
5C	1.96839	1.69201	1.81204	-0.27638	-0.15635	0.12003
6C	0.78291	1.13273	0.99365	0.34982	0.21074	-0.13909
7C	-2.57139	-2.54765	-2.48239	0.02374	0.089	0.06526
8C	1.72635	1.8703	1.90032	0.14395	0.17396	0.03001
9C	1.5734	1.70218	1.6234	0.12878	0.05001	-0.07877
10C	0.96658	1.09053	1.26016	0.12395	0.29358	0.16963
11H	-1.16447	-1.08006	-1.05241	0.08441	0.11206	0.02765
12H	-0.95957	-0.85091	-0.78838	0.10867	0.17119	0.06253
13H	-0.41934	-0.39172	-0.43389	0.02763	-0.01454	-0.04217
14H	-0.40022	-0.47927	-0.49096	-0.07905	-0.09074	-0.01169
15H	-0.89939	-0.94474	-0.95837	-0.04536	-0.05898	-0.01363
16H	-0.70916	-0.69231	-0.75392	0.01685	-0.04476	-0.06162
17H	-0.75066	-0.70629	-0.70102	0.04437	0.04964	0.00527
18H	-0.38116	-0.35617	-0.61246	0.02498	-0.2313	-0.25629
19H	-0.25308	-0.2584	-0.1483	-0.00532	0.10478	0.1101
20H	-0.15243	-0.25206	-0.32848	-0.09964	-0.17605	-0.07641
21H	-0.27502	-0.28039	-0.28871	-0.00536	-0.01369	-0.00833
22H	-0.266	-0.29597	-0.27759	-0.02997	-0.01159	0.01838
23H	-0.38722	-0.38205	-0.39846	0.00516	-0.01125	-0.01641
24H	-0.14577	-0.20349	-0.29834	-0.05772	-0.15257	-0.09485
25H	-0.13039	-0.13318	-0.3031	-0.00279	-0.1727	-0.16992
26H	-0.36899	-0.28929	-0.18218	0.0797	0.18681	0.10711
270		-0.8375	-0.64835	-0.26407	-0.20248	0.18915
28H			0.07355	-0.01871	0.13297	0.06159
290			-0.58439	0.66932	0.9499	0.15168
30H			0.06188	-0.10947	-0.09034	0.28058

molecules and their comparison respectively

Mode	$\omega_{cal.}, cm^{-1}$	$\omega_{exp.}, cm^{-1}$	Mode description
56	1717	1666	C2=C3 stretch
55	1502	1477	C(4,6,)-H scissor; C(8,9)-H antisymmetric deformation
53	1483	1477	C(8,9)-H antisymmetric deformation; C6-H scissor
52	1475	1452	C4-H scissor; C(8,9)-H antisymmetric deformation
51	1469		C10 antisymmetric deformation
50	1467	1438	C4-H scissor; C(8,9)-H antisymmetric deformation
49	1464	1428	C(8,9)-H antisymmetic deformation; C4-H scissor
48	1455		C(10)-H antisymmetric deformation
47	1407		C(8,9)-H symmetric deformation
46	1397	1379	C10-H symmetric deformation
45	1388		C(8,9)-H symmetric deformation
4.4	1256	1246	six member ring C-C stretch; C(1,3,4,5,6)-H wag;
44	1356	1346	C10-H symmetric deformation
42	1247	1221	C(1,3,4,5)-H wag; six member ring C-C stretch;
43	1347	1331	four member ring breath
42	1326	1311	C(1,3,4,5)-H wag; C4-C5 stretch
41	1286	1270	C7-C(1,5) stretch; C(1,5)-H wag; C4-H twist
40	1264	1252	C(1,3,5,6)-H in-plane wag; C4-C(3,5) stretch
39	1238	1232	four member ring breath; C(5,6)-H wag; C4-H twist
38	1232	1216	C(1,4,6)-H wag; six and four member ring deformation
27	1000		C4-H twist; C6-H wag; six four member ring
31	1222		deformation
36	1195	1187	C(1,3,4,5,6,8,9)-H wag; four member ring deformation
35	1180	1170	C2-C10 stretch; C(1,3,4,5,6)-H wag
34	1141	1130	C2-C10, C7-C9 stretch; C(1,3,4,5,6,8)-H deformation
33	1115	1107	four member ring deformation; C(1,4,5,6,8,9)-H twist
32	1097	1091	six member ring deformation; $C(1,5,6,10)$ -H twist
31	1071	1069	C(3,4,5,6,10)-H wag
30	1055		six and four member ring breath
29	1050	1043	C10-H twist
28	1027	1018	C(1,3,4,6,10)-H out-plane wag
27	1011	1018	C(8,9)-H out-plane wag
26	072		six member ring deformation, four member ring breath;
26	972		C(8,9)-H out-plane wag
25	964	956	all C-H deformation
24	950		C(8,9)-H out-of plane wag
23	937	931	six member ring deformation; C10-H out-of plane wag
22	014	909	six and four member ring deformation; all C-H
LL	914		deformation
21	895	890	six member ring breath; C(4,6)-H in-plane wag

Table S2. Raman vibrational analysis of (-)- α -pinene

20	847	842	six and four member ring deformation; C6-H wag
10	823	822	six and four member ring deformation;
19			C(4,6,8,9)-H out-of plane wag
18	795	794	C(3,4,6,10)-H wag
17	777	774	six member ring breath
16	672	668	six member ring breath; C6-H in-plane wag
15	623	628	six member ring deformation, four member ring breath
14	571	566	C2=C3 twist; C10-H twist

Mode	$\omega_{cal.}, cm^{-1}$	$\omega_{exp.}, cm^{-1}$	Mode description
59	1503	1472	C6-H scissor; C(8,9,10)-H antisymmetric deformation
67	1 400	1.470	C2-C3 stretch; C(8,9,10)-H antisymmetric deformation;
57	1488	14/2	C4-H scissor
55	1474	1440	C4-H scissor; C(8,9,10)-H antisymmetric deformation
54	1469	1440	C(8,9,10)-H antisymmetric deformation
53	1468		C(10,8,9)-H antisymmetric deformation
52	1463		C4-H scissor; C(8,9,10)-H antisymmetric deformation
51	1451		C2-C3 strech; C10-H antisymmetric deformation
49	1399	1396	C10-H symmetric deformation
48	1389	1396	C(8,9)-H symmetric deformation
47	1359	1361	C3-C4 stretch; C(1,3,4,5)-H out-of plane wag
46	1339	1329	C1-C2, C4-C5 stretch; C(1,3,4,5)-H wag
45	1321	1309	C1-C2 stretch; C(1,3,4,6)-H out-of plane wag
44	1293	1283	C(1,5)-H wag; C4-H twist; C7-C(5,1) stretch
43	1285	1268	C(1,3,4,5,6)-H wag
42	1250	1240	C(1,6)-H wag, C4-H twist;
42	1230	1240	four member ring deformation
41	1238	1227	all C-H wag; four member ring deformation
40	1229	1191	four member ring breath; C(1,3,4,5,6,9)-H wag
20	1212	1191	C2-C10 stretch; six and four member ring deformation;
39	1212		all C-H wag
28	1100	1101	six and four member ring deformation;
38	1199	1171	С(1,4,5,8,9,10)-Н wag
37	1172	1159	C7-C9 stretch; C(1,3,4,5,8)-H wag
36	1140	1144	four member ring deformation; all C-H wag
35	1110	1107	six member ring deformation; C(3,5,6,10)-H wag
34	1096	1086	C(1,3,4,5,6)-H twist
33	1081		six member ring deformation;
55	1001		C(1,3,6,10)-H in-plane wag
32	1066	1064	six, four and three member ring deformation;
52	1000	1004	C(4,5,6,10)-H wag
31	1056	1045	C(1,3,4,5,6,10)-H wag; C-O stretch
30	1017	1013	C(1,3,4,8,9,10)-H wag
29	1005		C(5,6,8,9,10)-H in-plane wag
28	975	945	four member ring breath; C(4,6,8,9,10)-H wag
27	954	945	C7-C(1,5) stretch; C(3,4,8,9)-H wag
26	948	945	C(8,9)-H out-of plane wag
25	940	945	six and four member ring deformation;
			C(3,6,8,10)-H wag
24	907		C1-C(6,7) stretch; C(4,6,10)-H in-plane wag

Table S3. Raman vibrational analysis of α -pinene oxide

		Suj This	pplementary Material (ESI) for <i>PCCP</i> journal is © the Owner Societies 2010
23	897	901	skeletal C-C, C-O deformation; C(1,4,5)-H wag
22 8	865	865	C3-O stretch; six and four member ring deformation;
	805	805	C(1,4,6,10)-H wag
21 847	817	845	C2-O stretch; six and four member ring deformation;
	047	843	C(3,4,8,9,10)-H in plane wag
20	01	220	C-O, six and four member ring deformation; C(6,8,9)-H
20	821	820	twist
19	772	772	C-O, six member ring breath; C(1,5,6,10)-H wag
18	707	700	C-O, six member ring deformation; C6-H in plane wag
17	650	657	skeletal breath
16	(20)	(2)	C-O, six and four member ring deformation;C7-C8
10	028	628	stretch
15	522	572	six member ring deformation
14	507	516	skeletal deformation

Mode	$\omega_{cal.}, cm^{-1}$	$\omega_{exp.}, cm^{-1}$	Mode description
64	1493	1476	C(8,9,10)-H antisymmetric deformation
63	1486		C4-H scissor, C9-H antisymmetric deformation
62	1480	1461	C(9,10)-H antisymmetric deformation
58	1440		C3-H, O29 -H wag; C8-H scissor
56	1395		C10-H symmetric deformation
50	1242	1212	C(1,3,4,5)-H, O27-H wag; C10-H scissor;
52	1342	1312	six member ring deformation
50	1207	1007	six and four member ring deformation;
50	1306	1237	O(27,29)-H wag; C(1,3,5) - H wag; C4-H twist
40	1202	1224	C(1,3,5,6)-H, O(27,29)- H wag;C4-H twist;
49	1293	1224	six and four member ring deformation;
10	1070	1004	C(1,3,5)-H, O29-H wag; C4-H twist; C7-C(5,1) stretch
48	1278	1224	six and four member ring deformation
16	1000	1100	C(1,4,5,6)-H wag; four member ring breath;
40	1233	1190	six ring deformation;
44	1209	1170	four member ring deformation; C(1,5)-H wag;C6-H twist
43	1192		six and four member ring deformation; all C-H, O-H wag
41	1139	1136	all C-H, O-H wag; six and four member ring deformation
20	1115	1114	six member ring deformation;
39	1115		С(1,4,5,6,10)-Н, О(27,29)-Н wag
20	1002	1000	six member ring deformation;
30	1093	1000	C2-C10 stretch; C(1,4,5,6,10)-H, O-H wag
37	1066	1052	six member ring breath; C-O29 stretch; C(4,5,6,10)-H wag
57	1000	1032	
36	1053	1052	six member ring deformation; C2-C10 stretch; O27-H
50	1055	1032	wag; C6-H twist
32	073	965	C(8,9,10)-H wag; six and four member ring deformation;
52	915	905	C(8,9,10)-H out-of plane wag
30	947	944	C(8,10)-H wag; C7-C9 stretch
29	928	930	six member ring deformation; C(4,5,6,10)-H, O28-H wag
28	919	911	six and four member ring deformation; C(4,6,10)-H wag
27	904		six member ring breath; C(4,6,10)-H wag
26	867	867	six and four member ring deformation
25	835	834	six and four member ring deformation; C(4,6,8,9)-H wag
24	828		six and four member ring deformation; C(1,8,9,10)-H wag
23	716		six member ring breath

Table S4. Raman vibrational analysis of (-)-pinanediol

Table S5. Calculated values of $\beta(G')^2$ and $\beta(A)^2/3$ of (-)- α -pinene, α -pinene oxide and

	(-)-α-p	oinene	α-pinen	α-pinene oxide		(-)-pinanediol	
mode	$\beta(G')^2$	$\beta(A)^2/3$	$\beta(G')^2$	$\beta(A)^2/3$	$\beta(G')^2$	$\beta(A)^2/3$	
14	-0.7063	-0.14923	0.3061	0.04527	0.0359	-0.05223	
15	0.9063	0.22437	-0.1774	-0.08137	0.0631	0.01957	
16	0.6194	0.07463	-0.4981	-0.1	-0.1070	0.03747	
17	2.3960	-0.00523	0.9693	0.20097	-0.3729	-0.10097	
18	-2.3547	-0.42717	-2.0615	-0.19217	0.3942	0.02297	
19	-0.9808	0.122	2.5236	0.21747	-1.0960	-0.20257	
20	-0.4049	0.093	-3.0722	-0.39987	0.3089	0.09717	
21	-1.7565	-0.07843	5.2903	1.15337	-0.3287	-0.0138	
22	-0.0208	0.1098	-2.8888	-0.51467	-0.2958	-0.08203	
23	1.7599	-0.01907	0.2619	-0.02993	-0.6843	-0.20903	
24	-0.1376	0.1639	-0.2487	-0.0167	1.6664	0.22143	
25	1.4387	0.23347	0.6808	-0.18487	-2.1804	-0.4136	
26	0.2127	-0.26727	0.6427	0.23447	1.2173	0.0735	
27	0.2122	-0.03437	0.1645	0.02407	0.6546	0.10547	
28	0.6903	0.01617	0.4862	0.16283	2.0263	0.35803	
29	-0.5472	0.14783	-0.2551	-0.17197	-1.5930	-0.38543	
30	0.2576	-0.07923	0.7115	0.1247	1.3086	0.3542	
31	-0.8913	-0.34477	-1.3279	-0.17617	0.2179	0.21357	
32	1.0530	0.25897	1.0408	-0.11517	-2.8911	-0.76767	

(-)-pinanediol (unit: 10⁴A⁵/AMU)

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2010								
33	-0.7280	0.0487	-0.0949	-0.04187	-0.4575	-0.07953		
34	-1.4749	0.0414	-0.6165	-0.13627	-0.3407	0.03067		
35	1.9579	0.34557	1.7209	0.14217	-1.1053	0.19923		
36	-1.3467	-0.06117	0.4107	0.0806	2.3390	-0.05693		
37	0.4591	0.14797	1.2845	0.15183	1.4811	0.1897		
38	-1.7884	-0.26673	-1.1034	-0.16837	0.8852	0.1058		
39	1.5427	-0.10793	-0.7647	-0.1421	-2.5505	-0.40783		
40	0.3439	0.0786	-0.6790	0.00157	0.5907	0.15427		
41	1.3283	0.01223	1.4802	0.32637	4.4360	0.50953		
42	-0.2871	-0.39183	-1.2451	-0.44003	-0.1899	-0.21457		
43	1.8749	0.26873	-3.5269	-0.60377	1.3517	0.3918		
44	-0.8369	-0.13477	5.7683	0.91013	-1.8276	-0.65987		
45	0.0552	-0.00623	-0.1772	-0.60367	0.3654	0.1641		
46	0.5137	0.099	1.2260	0.22063	-2.5180	-0.1124		
47	0.0106	0.00197	0.1210	-0.20703	-0.6083	-0.17583		
48	-0.1565	0.0737	0.0675	0.00857	1.0253	0.60403		
49	-0.4758	-0.3874	0.0661	0.02793	2.5730	0.5527		
50	-4.4490	-1.09647	0.0370	0.00217	-2.1332	-0.42703		
51	0.5351	0.0692	2.0720	0.13583	0.2836	-0.1872		
52	3.1185	0.84727	-2.2558	-0.5424	2.6137	0.64733		
53	-0.7315	0.05397	-1.4701	-0.2869	-0.4765	-0.0505		
54	0.0118	-0.1162	2.3379	0.108	-0.0001	-0.26513		

Supplementary Material (ESI) for <i>PCCP</i> This journal is © the Owner Societies 2010								
55	-0.8363	0.06107	2.0542	0.488	0.1296	0.00907		
56	-1.0720	-0.10123	-0.4142	0.26767	0.0414	0.03027		
57			-0.8972	-0.48353	-0.0673	0.0105		
58			-0.2131	-0.0181	-1.2808	-0.2184		
59			-1.5720	-0.05427	0.1730	-0.2129		
60					0.0983	0.00503		
61					0.0768	0.29993		
62					1.9782	0.22283		
63					1.1210	0.16097		
64					-2.6918	-0.5361		
65					0.5614	0.1019		
66					-0.5740	-0.0274		