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Electronic Supplementary Material 

 

A.  Optimal TL pulse for RISRS process 

Before assessing chirp effects on a pulse's ability to generate ground state 

coherences, it's important to check its TL analogue. Using degenerate displaced 

harmonics model, invariance between pulse duration and vibrational frequency is 

expected. Our simulations show that a pulse duration of τ0 which corresponds to the 

vibrational frequency (ν) as 1
40ν τ⋅ ≅  is optimal for RISRS mechanism.  

Fig. S1 shows the depth of modulation vs. the product of 
0ν τ⋅  for two modes: 

1,600 cm
-1

 (solid blue) and 1,200 cm
-1

 (dashed red). As can be seen, the curves are not 

exactly similar, but the optimal pulse duration (given in terms of a fraction of the 

vibratioanl period) is very similar. 
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Fig. S1: Modulation depth vs. the product of TL pulse duration times the vibrational 

frequency ( 0ν τ⋅ ) for 1,600 cm
-1

 (solid blue) and 1,200 cm
-1

 (dashed red). TL pulse 

which corresponds to 1
40ν τ⋅ ≅  is optimal for ground state modulations creation 

process. 

 

This is similar to previous findings by Pollard et. al.
1
, who suggested a value of 

3/10 instead of a 1/4. It was rationalized as a duration which is long enough to allow 

wavepacket evolution on the excited state before dumping back to ground state, but 

not too long to prevent a creation of a delocalized "smeared" excited state wave 

packet. 
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B. Invariance and Displacement-Dependence 

It's intriguing to check whether another invariance between pulse spectrum 

(
0

1
τ

∝ ) and vibrational frequency (ν ) exists also for the OC.  Fig. S2 demonstrates 

that in the absence of dephasing, the optimal widening factor, namely 
0

WF τ
τ= , is 

invariant with respect to constant 0ν τ⋅ . The solid, dashed, dotted-dashed and dotted 

lines in the figure refer to 0.25,1.00,1.50,2.00∆ = , respectively. For a constant ∆, any 

pair { }0ν τ,  is isomorphic with respect to Fw  with any pair { }0
τ

αν
α

, . Note that this 

statement is exact only with respect to Fw , but not with respect to φ ′′  or χ .   
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Fig. S2: Optimal widening factor (shown in a logarithmic scale) values vs. the invariant 

0ν τ⋅  (see text for details). The solid blue, dashed red, dotted-dashed green and dotted 

black lines represent ∆ = 0.25, 1.0, 1.5, and 2, respectively. 

 

Moreover, for a constant 0ν τ⋅ , the larger the displacement – the smaller is the 

optimal widening factor, and correspondingly the smaller is the optimal chirp. This is 

also shown in Fig. 3 in the text and its following rationalization. 

 



 3

C. A Note on Non-Degenerate Oscillators 

A first generalization of the theoretical section is the case where the ground state 

and excited state frequencies are non-degenerate, but still preserving the normal 

coordinates (neglecting Duschinsky's rotation). 

Based on our rational regarding the scaling factor of 2ω−  for the degenerate case, 

a similar reasoning leads here to suggest a scaling factor of 
e gω ω

 
(the first 

corresponds to the "time window" of dynamic following and the latter to the 

vibrational quantum to be covered by the pulse). 

Fig. S3 displays the modulation depth as a function of GVD for three cases, in 

which the product 
e g

ω ω  is kept constant: the solid curve corresponds to degenerate 

oscillators with ω = 1600 cm
-1

, the dashed line and the dashed dotted green line 

represent the modulation for 
g

ω = 1000, eω = 2560 cm
-1

, and vice verse, respectively. 
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Fig. S3: The product rule: Modulation vs. GVD for non degenerate oscillators. The solid 

blue, dashed red, dotted-dashed green lines represent the results for 
g e

ω ω=  = 1600 

cm
1−
, 1000

g
ω =  and 2560

e
ω =  cm

1−
 , and 2560gω =  and 1000

e
ω =  cm

1−
. The 

displacement is within small ∆  regime. The rest of the parameters are 
0 4.3τ =  fs, and 

0δ = . To account for zero point energy for the non-degenerate oscillators, the excited 

states are shifted by 2
g e

ω ω 
 
 

− / . 
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The optimal chirp for all cases is similar, although the general behavior of the 

modulation for these parameters is different.  

Fig. S4 shows the phases for the two paths in the non-degenerate cases, 

demonstrating that the absolute phases for each path are changes, but the optimal 

point (accounting for constructive interference) remains in tact. Moreover, to check 

the dependence of each path on ground and excited state frequencies, the cases of 

{ , } {1600,1200}g eω ω =  and {1200,1600}  cm
-1

 are displayed with circles and cross 

symbols, respectively. The results show that the roles of ground state and excited state 

are not symmetric. Whereas the phase of P0 is insensitive to eω  and depends only on 

gω  (as expected), the phase of P1 path is influenced by both. 
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Fig. S4: Non-degenerate oscillators – phase analysis, same as Fig. 5 in the text. The solid, 

dashed and dotted-dashed lines refer to { , } {1600,1600}g eω ω = , {1200,2133}  and 

{2133,1200}  cm
-1

, respectively. The circles and crosses refer to { , } {1600,1200}g eω ω =  

and {1200,1600}  cm-1. 

 

It is important to remark that this product rule is valid only for small 

displacements. Moreover, the simplicity of this interpretation directly leads us to 

suspect its validity for extreme ratios of g

e

ω
ω

; for example, in the case of g eω ω>> , 

where the build-up of the ground state non-stationary wavepacket is expected to be 

much slower than the excited state period. In this limit the product rule indeed fails.  
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D. Classical Estimate of Optimal Chirp in Large-∆∆∆∆ Regime 

When ∆ is large, a single vibrational quantum is small with respect to the 

coordinate dependence of the difference potential, allowing a classical estimate for 

OC. Assuming full impulsiveness of excitation a perfect reconstruction of the zeroth 

vibrational level of S0 is generated on S1. Upon its evolution, the overlap between the 

two nuclear wave functions for a single mode j will be: 

(1) 
11
22

22 2 2 3 3( /2 /6 ...)(1 )
| ( )   =      

jj

i
j

j j j

j j

t i t t i te
t e e

ω ω ω ω
α α

−
− ∆− ∆ + +−

〈 〉 ≈  

When summing the contributions of the phase term from all modes and using 

short time approximation, we obtain: 

(2) 2 2 3 31 1( )  =  | | | |
2 6m m m m

m m

t t tω ω
    

Φ − ∆ ⋅ + ∆ ⋅    
    
∑ ∑  

We can assign a phase factor introduced to an effective field of mode j, caused by 

all modes other than j: 

(3) 
2 3 3

62

m m
j m

m j

t
t

ω
φ ω

≠

∆  
= − 

 
∑  

The first term is irrelevant to the chirp (an arbitrary constant), but the latter – 

which must be compensated by the field if resonance is to be preserved – introduces a 

cubic chirp (TOD) to optimal field. 

On the other hand, assuming that the electric field should follow the vertical 

difference potential for creation of an optimal ground state wavepacket
2
, short time 

approximation for the place of the wave packet in the excited state yields a quadratic 

relation:  

(4) 
2

2( ) cos
2

eQ t t t
ω

ω
∆

= ∆ ≈  

Therefore, we conclude that a quadratic correlation exists between the difference 

potential and time: 

(5) ( ) ( )
2 3 2

2
ge

t
P t Q t

ω
ω

− ∆
∆ = − ∆ =

�
�  

Translating into frequency, we obtain: ( )
( ) 2 3 2

2

geP t t
t

ω
δω

∆ −∆
= =

�
. 
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The phase is obtained by integration over time: 

( )
2 3 2 2 3 3

2 6

t t
t dt dt

ω ω
φ δω

∆ ∆
= = =∫ ∫ . 

 

As can be seen, we obtain a very similar relation to the one obtained before from 

calculation of the phase factor giving insight into chirp effects in the large-∆ regime, 

where the optimal chirp is indeed ∆-dependent (on the contrary to the low-∆'s 

scenario). This result shows clearly that in this regime chirp effects of different modes 

are correlated and not single mode characteristics. 

 

 

E. PT Analysis – Detailed Discussion 

In the discrete state representation, the wave function in either electronic state can 

be described as a superposition: / /

/ ( , ) ( ) ( )
g e g e

g e n n

n

x t c t xψ φ=∑  

where / ( )g e

n
xφ  are n

th
 vibrational eigen-states of the ground/excited state 

potentials. The equations of motion for the coefficients are given by: 

( ) * *

2

g e

g

g en
g n nm m

m

e
e gn

e n nm m

m

dc
n c F c

dt

dc
n c F c

dt

ω ω

ω µε

ω δ µε
−


= −



 = + + −


∑

∑

�

�

 

where g e

nm n m
F φ φ=  are Franck-Condon (FC) factors and 

2

g eω ω−
 accounts to the zero 

point energy shift. Expectation values for the position and momentum can be written: 

1
2 *

/ 1/

*

1/

Re 1

Im 1

g e n ng e
n

n ng e
n

x n c c

p n c c

ω−

+

+

  
∝ + 

  


  ∝ +   

∑

∑
 

Thus, the modulation (M) is given by: *

11 n n

n

M n c c +∝ +∑  

Within the linear regime of excitation ("weak field"), the ground state coefficients 

fulfill 
0 0

1g g

n
c c ≠≅ � , so that the sum in the expression for the modulation reduces to: 

0 1 1

g g g

g
M c c c≅ ≅  
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Hence, in the absence of electronic dephasing, the modulation at the ground state 

is proportional to the population of the first vibrational excited state. In order to 

retrieve expressions for /g e

nc  we use perturbation theory (PT), which is valid for 

fluences in the linear regime. Using first order PT, the amplitude of the excited state 

vibrational levels reads: 

 ( ) ( )0( ) exp ( ') 0

t

n ei i
ne g

n t F t E t t dtµ ε
−∞

′ ′= − − −∫� �
  

where 
2

g ee

n eE n
ω ω

ω δ
−

= + +�  is the energy of the n th  vibrational level within the 

excited electronic state manifold.  

Explicit integration of the equation shows that the final excited state populations 

e

nc  are chirp-independent. This is a manifestation of the well known Brumer-Shapiro 

theorem, which states that no control is attainable for operators that commute with the 

Hamiltonian and are influenced by single photon processes. Coherences of the ground 

state are second order in the field, and thus the Brumer-Shapiro theorem does not 

apply to them. Second order PT for 1
g
 yields :  

 ( ) ( ) ( )1 11 ( ) exp ( ') ( )

t

n gi
ng e

n n

it F t n t E t t dt tPµ ε ∗

−∞

′ ′ ′= − − − ≡∑ ∑∫ �
�

�
 

The generalization to multidimensional scenario is immediate. The wavefunction 

is written as a 2-D direct (tensor) product of the harmonic oscillators' basis set: 

/ /

/

/

,

( , , ) ( ) ( ) ( )
g e g e

g e x y

g e nm n m

n m

x y t c t x yψ φ φ= ⊗∑  

The equations of motion for the expansion coefficients are similar to the one-

dimensional one: 

( )

( )

' '

' '

', '

* *

' ' ' '

', '

g
g n m enm

x y nm nm n m

n m

e
e nm gnm

x y nm n m n m

n m

dc
n m c F c

dt

dc
n m c F c

dt

ω ω µε

ω ω µε


= + −



 = + −


∑

∑

�

�

 

Where, as before, ' '

' 'g e g e

n m x x y y

nm n n m mF φ φ φ φ=  are the FC factors. 

The Feynman diagram for mode x within the interaction picture is shown in Fig. 

S5.  Here also the amplitudes of different paths are determined by the FC factors. 

Looking at the diagram, we conclude that for the small displacements regime, the 

only paths that contribute to the modulation of the x(y) mode are P00 and P10(P01). 
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Fig. S5: Exemplar Feynman diagram for the modulation of the first mode. (right and left) 

First and second order coupling are denoted by arrows with the FC proportion denoted 

nearby. 

 

 

F. PT for the Large ∆∆∆∆ Regime 

In the large−∆ regime, FC factors for more paths are substantial, leading to a more 

complex picture. Fig. S6 displays the absolute values and phases of the lowest four 

paths 0 1 2 3iP i, = , , , , for 1.03∆ = (upper panel) and 2.06∆ =  (lower panel). 

Using second order PT, different paths don't interact with each other, so that the 

chirp-dependence phase of each path remains unchanged (see inset of the figure). The 

total modulation is changed mainly due to the addition of more paths, which have 

now significant FC factors. Moreover, higher paths correspond to off-resonance 

intermediate states, which absolute values fall off sharply with the GVD. These paths 

peak at the TL, therefore the optimal chirp shifts towards the TL as ∆ is increased. 

Semi-classically, the same trend is achieved when thinking of the wave-packets 

being far away from the minima of the excited state, where the slope of the potential 

curve is higher. This leads to faster dynamics, and therefore to lower optimal chirp. 
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Fig. S6: Large displacement regime. (main) Absolute values of the path contributions. 

The solid, dashed, dotted-dashed, dotted, and extra thin lines refer to P0, P1, P2 and P3, 

respectively. The extra thick lines refer to the total modulation, or the sum of all of the 

paths. Upper and lower panels refer to displacement of ∆ = 1.03 and 2.06. (inset) Phases 

of the paths. 

 

 

G. Semi-quantitative approach to optimal chirp values 

As shown in Fig. 5 in the text, within the small-displacements regime, the phase 

of the paths become linear-dependent on GVD for large chirps. As even the first 

optimal chirp point is within this linear regime, we'll denote: 

0(1) 0(1)2
a Gπϕ = ± +  

where 0(1)ϕ  is the phase of the P0(P1) path, G  is the GVD, and 0 1a a= − . 

The dependence of a0(-a1) on the oscillator frequency for degenerate oscillators is 

plotted in Fig. S7, from which we conclude that 2

0a ω∝ . Therefore, we conclude that 

the optimal chirp: 2

optG ω−∝ , in accordance to simulation results and semi-classical 

reasoning described in text. 

For non-degenrate oscillators, the product rule (stated earlier in the supplementary 

material, and shown in Fig. S4) applies. As can be seen, the dependence of each path 

on GVD changes due to the breaking of degeneracy; nonetheless, the phase-matching 
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(constructive interference) point remains the same, suggesting the validity of the 

product rule for this case. 
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Fig. S7: Frequency dependence of the path's phase on the oscillator frequency. 

 

Based on all these finding, and referring to cases where the product rule prevails, 

we "update" our formula for degenerate oscillators to be: 

0 2

1

2

2
2

g

e

g e g

a G

a G

πϕ
ω

ωπϕ
ω ω ω

= −

 
= − + −  

 

 

These formulae are valid also for the degenerate case, keeping also to the demand of 

0 1a a= − . 

The first optimal chirp ( 0 1ϕ ϕ= ) corresponds to: 

2

g e

optG
a

πω ω
=  

The product rule for non-degenrate oscillators was achieved. 
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