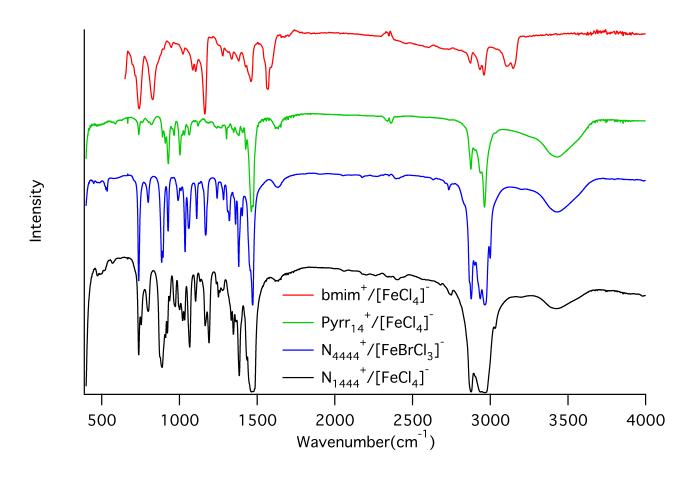
Supplementary Information Ionic Liquids and Solids with Paramagnetic Anions

February 6, 2010

Brenna M. Krieger,¹ Heather Y. Lee,¹ Thomas J. Emge,¹ James F. Wishart,² and Edward W. Castner, Jr.¹

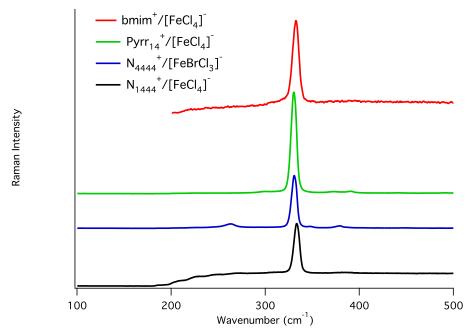
¹Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8087

²Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000


Experimental methods

Fourier-transform Infrared Spectroscopy.

Ambient room temperature (294 \pm 1 K) fourier-transform infrared (FT-IR) absorption spectra were recorded using a Thermo Nicolet/Nexus 670 FT-IR spectrometer.


Results

Fourier-transform Infrared Spectroscopy.

 $Figure \ 1: \ Infrared \ spectra \ of \ bmim^+/[FeCl_4]^-, \ Pyrr_{14}^+/[FeCl_4]^-, \ N_{4444}^+/[FeBrCl_3]^- \ and \ N_{1444}^+/[FeCl_4]^-.$

Raman spectroscopy

 $Figure \ 2: \ Raman \ spectra \ of \ bmim^+/[FeCl_4]^-, \ Pyrr_{14}^+/[FeCl_4]^-, \ N_{4444}^+/[FeBrCl_3]^- \ and \ N_{1444}^+/[FeCl_4]^-.$

bmim ⁺ /[FeCl ₄] ⁻	4.689
Pyrr ₁₄ ⁺ /[FeCl ₄] ⁻	4.157
N ₄₄₄₄ ⁺ /[FeBrCl ₃] ⁻	3.976
N ₁₄₄₄ ⁺ /[FeCl ₄] ⁻	4.253

Table 1: FWHM for Raman lineshapes in cm^{-1} .

Single crystal diffractometry

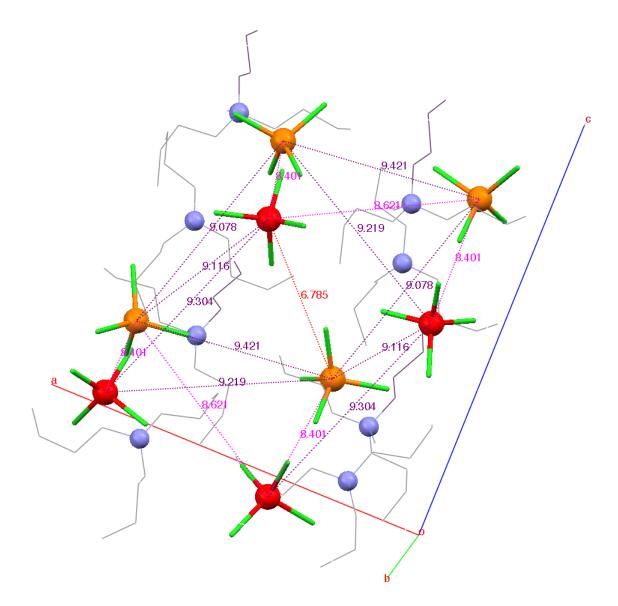


Figure 3: Diagram of the unit cell of $N_{1444}^+/[FeCl_4]^-$ showing the distances between the iron atoms, depicted in red and orange to represent the two inequivalent positions. There is one relatively short separation of 6.785 Å per pair of inequivalent iron atoms. All other distances are greater than 8 Å.

Thermal properties

Figure 4: DSC scans of $Pyrr_{14}^+/[FeCl_4]^-$, $N_{1444}^+/[FeCl_4]^-$, and $N_{4444}^+/[FeBrCl_3]^-$. The data in this figure show the repetitive DSC scans measured at Brookhaven National Lab. Upon detailed examination of the data for $N_{4444}^+/[FeBrCl_3]^-$, the lack of an appreciable heat capacity increase after the transition at 379 K suggested that it was not a melting transition. Consequently, a DSC scan extending to higher temperature was measured at Rutgers and it is shown in Fig. 4 of the paper.

SQUID magnetic measurements

Magnetic susceptibility measurements were made on $N_{4444}^+/[FeBrCl_3]^-$, $N_{1444}^+/[FeCl_4]^-$ and $Pyrr_{14}^+/[FeCl_4]^-$. All three compounds display simple paramagnetic behavior in response to an applied field in these temperature ranges.

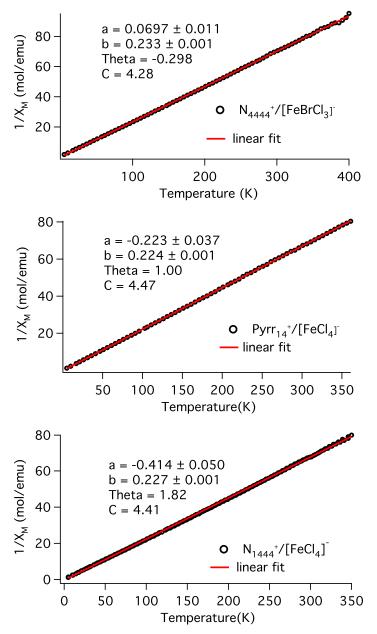


Figure 5: Inverse χ_M of $Pyrr_{14}^+/[FeCl_4]^-$, $N_{1444}^+/[FeCl_4]^-$ and $N_{4444}^+/[FeBrCl_3]^-$.

Crystallographic Information Files and checkCIF Files

The Crystallographic Information File (.cif file) for $Pyrr_{14}^+/[FeCl_4]^-$ is named **p14b.cif**; the associated checkCIF file is **P14_checkcif_report.pdf**.

The Crystallographic Information File (.cif file) for $N_{1444}^+/[FeCl_4]^-$ is named **N1444b.cif**; the associated checkCIF file is **N1444_checkcif_report.pdf**.

These four files are available from the RSC ReSource site at http://rsc.org.