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1. Mulliken charge distribution on the molecular backbone 

 

 

 

 

 

 

 

 

 

 

Figure S1. Xanthene-based chemical structure with atom numbers. 
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                               Fluorescein  (FL)                                                           Erythrosin B (ER) 
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       Phloxine B (PH) 

Figure S1.1 . Mulliken charge distribution (B3LYP/6-31G**, 3-21G** for I atoms) in the neutral state 

of the Xanthene derivatives investigated. From top to bottom: from Fluorescein (FL) to Phloxine B 

(PH). Atom numbering as defined in Figure S2. 
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2. C-Y neutral 

 

 

 

 

 

 

 

 

 

 

Figure S2. C-Y bond length variations with respect to the FL compound. B3LYP/6-31G**, 3-21G** 

basis set for iodine (neutral state) . 
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3. One-electron energy levels of the neutral species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Frontier molecular orbital energy levels calculated at the B3LYP/6-31G** (3-21G** for 

iodine atoms) level (HOMO -red line- and LUMO -blue line-) for each xanthene derivative. The 

LUMO+1 level of FL correlates with the LUMO levels of EO, ER, PH and RB. 
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4. Molecular orbital shapes of the reduced species.  

 

 

 

 

 

 

  

ER:    SOMOα       RB: SOMOα 

 
Figure S4.  Singly occupied molecular orbital (SOMOα) of ER and RB mono-reduced species.  
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5. Bond length variation of C-Y bonds upon reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5 C-Y bond-length variation upon the reduction process (B3LYP/6-31G**, 3-21G** for I 

atoms) 
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6. Contributions of vibrational frequencies to the intramolecular reorganization energy, as 

computed from HR parameters (Sj). 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.1. Contributions of each vibrational frequency to the intramolecular reorganization 

parameters, as resulting from the computation of the HR parameters for the EO compound. (top, blue) 

neutral state; (bottom, red) anionic state. B3LYP/6-31G**. 
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Figure S6.2. Contributions of each vibrational frequency to the intramolecular reorganization 

parameters, as resulting from the computation of the HR parameters for the ER compound. (top, blue) 

neutral state; (bottom, red) anionic state. B3LYP/6-31G**, 3-21G** for iodine. 
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7. Calculated electron transfer integrals Vij (B3LYP/6-31G**, 3-21G** for iodine) as a function of the 
displacement along the xanthene moiety.   
 
 

 
 
Figure S7. Computed charge transfer intergrals Vij for two cofacial molecules as a function of the 
translation along the long axis of the xanthene moieties. The sketches of the molecules (RB) forming the 
dimer are reported for selected translations. While the Vij dependence against short axis translation shows a 
clear trend across the four compounds, the dependence against the long axis translation is less clear partly 
because of the lare separation between molecules in the dimmer, partly because of the different bond 
lengths and out of plane deformation of the xanthene moiety in the four derivatives. These differences 
prevent a strict comparison among the curves in the Figure.  
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8. Absolute computed energies for the four systems investigated (for the meaning of the critical 

point, i.e. En
geo-n, En

geo-a, Ea
geo-a and Ea

geo-n see Figure 2 in the article) and reorganization energy 

calculated by using the Adiabatic Potential (AP) approach 

 

 EO ER PH RB 

En
geo-n  (Hartree) -11753.430714 -29026.903425 -13591.774729 -30865.234503 

En
geo-a (Hartree) -11753.426604 -29026.898981 -13591.765874 -30865.223924 

Ea
geo-a (Hartree) -11753.484872 -29026.956327 -13591.480091 -30865.299681 

Ea
geo-n (Hartree) -11753.480959 -29026.952073 -13591.833742 -30865.292251 

λi (eV) 0.22 0.24 0.41 0.49 
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