Supporting Information for

Ab initio static and molecular dynamics study of the absorption spectra of the 4-styrylpyridine photoswitch in its cis and trans forms

Latévi Max Lawson Daku, Jorge Linares, Marie-Laure Boillot

1 Vibrational normal coordinates and frequencies determined in

 the harmonic approximation for 4-styrylpyridine in the S_{0} ground state, and Huang-Rhys factors calculated within the displaced harmonic oscillator approximation for the structural variations induced by the $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ and $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$ changes of states1.1 Trans-4-styrlpyridine: vibrational analysis in the ground state and $\mathrm{S}_{0} \rightarrow$ S_{1} Huang-Rhys factors (B3LYP $/ \mathcal{G}$ results)

Table S1: Vibrational normal coordinates and frequencies obtained within the harmonic approximation for trans-4-styrylpyridine in the S_{0} ground state. The $\left|Q_{1}\right|$'s are the magnitudes of the projections on the ground-state mass-weighted normal coordinates of the structural variation induced by the $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ change of states, the \mathcal{S}_{1} 's are the associated Huang-Rhys factors (B3LYP $/ \mathcal{G}$ results).

Table S1: continued.

$\nu_{3}\left(a^{\prime}\right)=78 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.257 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.077$

$\nu_{5}\left(a^{\prime}\right)=202 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.534 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.853$

$$
\begin{gathered}
\nu_{7}\left(a^{\prime}\right)=284 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.114 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0.055
\end{gathered}
$$

$$
\nu_{9}\left(a^{\prime \prime}\right)=390 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0
$$

$$
\nu_{11}\left(a^{\prime}\right)=469 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.035 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.008
$$

$$
\mathcal{S}_{1}=0
$$

To be continued...

Table S1: continued.

$\nu_{13}\left(a^{\prime}\right)=542 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.016 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.002
$$

$\nu_{15}\left(a^{\prime}\right)=623 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.014 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.002
$$

$\nu_{17}\left(a^{\prime}\right)=674 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.010 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.001
$$

$\nu_{19}\left(a^{\prime \prime}\right)=749 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0
$$

$$
\begin{gathered}
\nu_{21}\left(a^{\prime \prime}\right)=828 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0
\end{gathered}
$$

$\nu_{14}\left(a^{\prime \prime}\right)=558 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0$

$\nu_{16}\left(a^{\prime}\right)=646 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.042 \mathrm{amu}^{1 / 2} \AA$

$\nu_{18}(a)=702 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0
$$

$\nu_{20}\left(a^{\prime \prime}\right)=774 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0$

$$
\begin{gathered}
\nu_{22}\left(a^{\prime}\right)=838 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.025 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0.008
\end{gathered}
$$

To be continued ...

Table S1: continued.

$$
\nu_{23}\left(a^{\prime \prime}\right)=853 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0
$$

<

$$
\nu_{25}\left(a^{\prime}\right)=883 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.063 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.052
$$

$\nu_{27}\left(a^{\prime \prime}\right)=934 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0
$$

$$
\nu_{29}\left(a^{\prime \prime}\right)=988 \mathrm{~cm}^{-1}
$$

$\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0
$$

$$
\begin{gathered}
\nu_{31}\left(a^{\prime \prime}\right)=999 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0
\end{gathered}
$$

E

To be continued ...

Table S1: continued.

$\nu_{33}\left(a^{\prime}\right)=1005 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.061 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.056$

$$
\nu_{35}\left(a^{\prime}\right)=1046 \mathrm{~cm}^{-1}
$$

$\left|Q_{1}\right|=0.005 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.000$

$$
\nu_{37}\left(a^{\prime}\right)=1101 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.008 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.001
$$

$\nu_{39}\left(a^{\prime}\right)=1181 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.020 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.007
$$

$$
\begin{gathered}
\nu_{41}\left(a^{\prime}\right)=1215 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.059 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0.063
\end{gathered}
$$

$$
\mathcal{S}_{1}=0.063 \quad \mathcal{S}_{1}=0.011
$$

To be continued...

Table S1: continued.

$\nu_{43}\left(a^{\prime}\right)=1252 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.018 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.006$

$\nu_{45}\left(a^{\prime}\right)=1321 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.026 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.013$

$\nu_{47}\left(a^{\prime}\right)=1357 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.065 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.085$

$\nu_{49}\left(a^{\prime}\right)=1375 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.034 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.023$

$$
\begin{gathered}
\nu_{51}\left(a^{\prime}\right)=1474 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.031 \mathrm{amu}^{1 / 2} \AA
\end{gathered}
$$

$$
\mathcal{S}_{1}=0.021
$$

$\nu_{44}\left(a^{\prime}\right)=1294 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.001 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.000
$$

$\nu_{46}\left(a^{\prime}\right)=1337 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.047 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.043$

$\nu_{48}(a)=1363 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.020 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.008
$$

$\nu_{50}\left(a^{\prime}\right)=1448 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.027 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.015
$$

$$
\nu_{52}\left(a^{\prime}\right)=1517 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.033 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.025
$$

To be continued ...

Table S1: continued.

$\nu_{53}\left(a^{\prime}\right)=1529 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.005 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.001$

$\nu_{55}\left(a^{\prime}\right)=1619 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.039 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.036$

$\nu_{57}\left(a^{\prime}\right)=1649 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.055 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.073
$$

$\nu_{59}\left(a^{\prime}\right)=3158 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.004 \mathrm{amu}^{1 / 2} \AA$ $\mathcal{S}_{1}=0.001$

$$
\begin{gathered}
\nu_{61}\left(a^{\prime}\right)=3174 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.000 \mathrm{amu}^{1 / 2} \AA
\end{gathered}
$$

$$
\mathcal{S}_{1}=0.000
$$

$\nu_{54}\left(a^{\prime}\right)=1597 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.060 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.084
$$

$\nu_{56}\left(a^{\prime}\right)=1636 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.087 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.184$

$\nu_{58}\left(a^{\prime}\right)=1690 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.124 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.384
$$

$\nu_{60}\left(a^{\prime}\right)=3166 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.001 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.000
$$

$$
\begin{gathered}
\nu_{62}\left(a^{\prime}\right)=3185 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.001 \mathrm{amu}^{1 / 2} \AA
\end{gathered}
$$

$$
\mathcal{S}_{1}=0.000
$$

To be continued ...

Table S1: continued.

$\nu_{63}\left(a^{\prime}\right)=3188 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.001 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.000
$$

$$
\nu_{65}\left(a^{\prime}\right)=3191 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.002 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.000
$$

$$
\begin{gathered}
\nu_{67}\left(a^{\prime}\right)=3205 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.001 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0.000
\end{gathered}
$$

$\nu_{69}\left(a^{\prime}\right)=3225 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.001 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.000
$$

1.2 Cis-4-styrlpyridine: vibrational analysis in the ground state and $\mathrm{S}_{0} \rightarrow$ $\mathrm{S}_{1}, \mathrm{~S}_{2}$ Huang-Rhys factors (BOP $/ \mathcal{G}$ results)

Table S2: Vibrational normal coordinates and frequencies obtained within the harmonic approximation for cis-4-styrylpyridine in the S_{0} ground state. The $\left|Q_{I}\right|$'s are the magnitudes of the projections on the ground-state mass-weighted normal coordinates of the structural variation induced by the $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{I}$ change of states, the \mathcal{S}_{I} 's are the associated Huang-Rhys factors ($I=1,2 ; \mathrm{BOP} / \mathcal{G}$ results).
$\left|Q_{1}\right|=0.286 \mathrm{amu}^{1 / 2} \AA Q_{1}$

Table S2: continued.

To be continued ...

Table S2: continued.
$\left|Q_{1}\right|=0.103 \mathrm{amu}^{1 / 2} \AA=0.025 \mathrm{amu}^{1 / 2} \AA$

[^0]Table S2: continued.

To be continued ...

Table S2: continued.
$\left|Q_{1}\right|=0.018 \mathrm{amu}^{1 / 2} \AA$

To be continued...

Table S2: continued.

To be continued ...

Table S2: continued.
$\left|Q_{1}\right|=0.039 \mathrm{amu}^{1 / 2} \AA$

To be continued...

Table S2: continued.

To be continued...

Table S2: continued.
$\left|Q_{1}\right|=0.019 \mathrm{amu}^{1 / 2} \AA$

1.3 Cis-4-styrlpyridine: vibrational analysis in the ground state, optimised S_{1} geometry and $S_{0} \rightarrow S_{1}$ Huang-Rhys factors (B3LYP $/ \mathcal{G}$ results)

Figure S : Optimised B3LYP/G geometry of cis-4-styrylpyridine in the S_{1} state.

Table S3: Vibrational normal coordinates and frequencies obtained within the harmonic approximation for cis-4-styrylpyridine in the S_{0} ground state. The $\left|Q_{1}\right|$'s are the magnitudes of the projections on the ground-state mass-weighted normal coordinates of the structural variation induced by the $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ change of states, the \mathcal{S}_{1} 's are the associated Huang-Rhys factors (B3LYP/ \mathcal{G} results).

To be continued ...

To be continued ..

Table S3: continued.

To be continued ...

To be continued ...

Table S3: continued.

$\nu_{29}(a)=988 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.102 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.153
$$

$\nu_{31}(a)=995 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.161 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.382
$$

$\nu_{33}(a)=1005 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.056 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.047$

$$
\nu_{35}(a)=1045 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.187 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.547
$$

$\nu_{30}(a)=989 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.152 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.338$

$\nu_{32}(a)=1001 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.188 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.526
$$

$\nu_{34}(a)=1008 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.169 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.427
$$

$\nu_{36}(a)=1089 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.199 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.636$

To be continued ...
Table S3: continued.

$$
\nu_{37}(a)=1101 \mathrm{~cm}^{-1}
$$

$\left|Q_{1}\right|=0.043 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.031$

$\nu_{39}(a)=1177 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.10 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.002$

$$
\nu_{41}(a)=1201 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.088 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.139
$$

$$
\nu_{43}(a)=1244 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.035 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.022
$$

$\nu_{38}(a)=1113 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.065 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.071$

$\nu_{40}(a)=1180 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.011 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.002
$$

$\nu_{42}(a)=1229 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.000 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.000
$$

$\nu_{44}(a)=1261 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.005 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.000
$$

To be continued ...

Table S3: continued.

To be continued ...

To be continued ...

Table S3: continued.

$\nu_{61}(a)=3165 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.028 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.036
$$

$$
\nu_{63}(a)=3185 \mathrm{~cm}^{-1}
$$

$$
\left|Q_{1}\right|=0.013 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.008
$$

$\nu_{65}(a)=3202 \mathrm{~cm}^{-1}$

$$
\left|Q_{1}\right|=0.020 \mathrm{amu}^{1 / 2} \AA
$$

$$
\mathcal{S}_{1}=0.019
$$

$$
\begin{gathered}
\nu_{67}(a)=3210 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.087 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0.363
\end{gathered}
$$

$\nu_{62}(a)=3181 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.020 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.019$

$\nu_{64}(a)=3195 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.012 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.007$

$\nu_{66}(a)=3208 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.044 \mathrm{amu}^{1 / 2} \AA$

$$
\mathcal{S}_{1}=0.094
$$

$\nu_{68}(a)=3221 \mathrm{~cm}^{-1}$
$\left|Q_{1}\right|=0.048 \mathrm{amu}^{1 / 2} \AA$
$\mathcal{S}_{1}=0.108$

To be continued ...

Table S3: continued.

$$
\begin{gathered}
\nu_{69}(a)=3242 \mathrm{~cm}^{-1} \\
\left|Q_{1}\right|=0.086 \mathrm{amu}^{1 / 2} \AA \\
\mathcal{S}_{1}=0.354
\end{gathered}
$$

[^0]: To be continued ...

