Supporting information:

Pore size and surface charge control in mesoporous TiO₂ using post-grafted SAMs.

Dereje Hailu Taffa,[†] Murugavel Kathiresan,[†] Lorenz Walder,^{†*} Britta Seelandt[‡] and Michael Wark[‡]

^{*†*} Institute of Chemistry, University of Osnabrück, Barbarastrasse. 7, D-49069 Osnabrück, Germany, and

 [‡] Institute of Physical Chemistry and Electrochemistry, Leibnz Universität Hannover, Callinstrasse 3A, D-30167 Hannover, Germany
 <u>Corresponding author</u>: Prof. Dr. Lorenz Walder, Institute of Chemistry, University of
 Osnabrück, 49069 Osnabrück, mail: LoWalder@uos.de

1. IR Measurements

Representative IR spectra of the modified films are shown in the figure below and the frequency assignments of the absorption bands are tabulated in table 1.

Figure 1: Selected IR spectra of unmodified and modified mesoporous TiO₂ films.

film	Frequency	Assignment	ref
TiO ₂	3000- 3600	O-H stretching (H ₂ O)	1
	1640, 1540, 1440	O-H bending,	
	730	lattice vibration	
$TiO_2_PhO_C_{14}_R^+$	3080-3200	C-H stretching (aromatic system)	2
	2926	C-H asymmetric stretching (aliphatic CH ₂)	3
	2854	C-H symmetric stretching (aliphatic CH ₂)	2
	1600-1700	C=C, C=N stretching (ring)	
	1000-1150	O-P stretching	4
$TiO_2_PhO_C_{14}_R^-$	2928	CH ₂ asymmetric stretching	2, 4
	2856	CH ₂ symmetric stretching	
	1375	S=O asymmetric stretching	
	1000-1150	O-P-O stretching	

Table 1: Frequency assignments fort he IR Absorption bands

 Table 1: Surface coverage of the different phosphonic acid (from IR Spectroscopy)

Phosphonic Γ_{IR} Chargeacids $(mol/cm^2) \ge 10^{-7}$ Pho-C_6-Py^+0.7PositivePho-C_{10}-Py^+1.1Pice 2 = D_{10}^+1.1

on mesoporous s-TiO $_2$ thin films.

	Pho-C ₆ -Py ⁺	0.7	
Positive	$Pho-C_{10}-Py^{+}$	1.1	
	$Pho-C_{14}-Py^{+}$	1.1	
	Pho-C ₆ -SO ₃	0.3	
Negative	Pho-C ₁₀ -SO ₃ ⁻	0.7	
	Pho-C ₁₄ -SO ₃ ⁻	0.8	

Note: surface concentrations are not corrected for roughness factor (≈400).

Figure 2: Cyclic voltatmmetry, (A) $0.1 \text{mM} [\text{Fe}(\text{CN})_6]^{4-}$ and (B) $0.1 \text{mM} [\text{IrCl}_6]^{2-}$ on bare TiO₂(black) and FTO(red).

Influence of the carbon chain length on the pore size: a case of the negatively charged phosphonic acid with negatively charged redox ions.

Figure 3: Cyclic voltatmmetry, (A) $0.1 \text{mM} [\text{Fe}(\text{CN})_6]^{3-}$ and (B) $0.1 \text{mM} [\text{IrCl}_6]^{2-}$ on s-TiO₂_Pho_C_n_SO₃⁻ electrode with different carbon chain: bare s-TiO₂ (black), n=6(red), n=10 (blue) and n=14 (wine).

Table 2: Increase of peak to peak separation (ΔE_P) on TiO₂-Pho-C_n-SO₃⁻ electrode for negatively charged redox ions.

Electrode	[IrCl ₆] ^{2-/3-}		[Fe(CN) ₆] ^{3-/4-}	
	I _{a,p} (μA)	∆E _P (mV)	I _{a,p} (μA)	$\Delta E_{P}(mV)$
TiO ₂ - Pho-C ₆ -SO ₃ -	7	101	11	85
TiO ₂ - Pho-C ₁₀ - SO ₃ -	5	127	8	91
TiO ₂ - Pho-C ₁₄ - SO3 ⁻	3	153	7	102

Synthesis

The dialkylation of 1,3-trimethylene dipyridine is well known in literature,^{5, 6} but its monoalkylation with methyl iodide or other alkylating agents has not been reported so far. After several unsuccessful trials we found a way using one equivalent of 1,3-trimethylene dipyridine and a sub-stoichiometric amount (1/5 equivalent) of methyl iodide in acetonitrile as a solvent. The synthesis follows scheme:

Scheme

1-methyl-4-[3-(pyridin-4-yl)propyl]pyridinium iodide: To a solution of 2g (10.08mmol) 1,3-trimethylenedipyridine in 20ml MeCN at 50°C a solution of 0.13ml (2.017mmol) methyliodide in 20ml acetonitrile was added dropwise over 4h and stirred for another 20h. MeCN was then distilled off under reduced pressure, to yield a slurry, which was dissolved in water and washed with dichloromethane. Removal of

the water under reduced pressure gave solid which was then dried under high vacuum to afford 0.600g (1.76mmol, 87%) 1-methyl-4-[3-(pyridin-4-yl)propyl]pyridinium iodide as a dark brown solid.

1H NMR (250 MHz, D₂O, δ): 8.46 (d, *J* = 6.52 Hz, 2H), 8.33 (d, *J* = 6.16 Hz, 2H), 7.72 (d, *J* = 6.42 Hz, 2H), 7.37 (d, *J* = 6.09 Hz, 2H), 4.18 (s, 3H), 2.84 (t, 2H), 2.71 (t, 2H), 2.09-1.93 (m, 2H).

1-methyl-4-{3-[1-(10-phosphonodecyl) pryidinium-4-yl]propyl} pyridinium bromide iodide: 0.4g (1.17mmol) of 1-methyl-4-[3-(pyridin-4-yl)propyl]pyridinium iodide and 0.84g (2.35mmol) diethyl(10-bromodecyl)phosphonate were reacted in 20ml MeCN at 80°C for 24h. After 24h, MeCN was distilled off under reduced pressure, the residue dissolved in water, and washed with ethylacetate. Removal of water under reduced pressure yielded a dark reddish brown solid which was hydrolysed using 20ml 20% aqueous HBr at 100°C for 2 days, followed by removal of the solvent under reduced pressure to yield a black oily residue. It was dissolved in 20ml MeOH, loaded with 0.5g charcoal, heated and filtered through Celite. The filterate thus obtained was evaporated under reduced pressure yielding a pale brown semisolid of 0.55g (.85 mmol, 73%).

1H NMR (250 MHz, D₂O, δ): 8.56 (dd, J = 6.34 Hz, 4H), 7.81 (t, J = 5.65 Hz, 4H), 4.44 (t, 2H), 4.22 (s, 3H), 2.92 (t, 4H), 2.08 (t, 2H), 1.96-1.81 (m, 2H), 1.75-1.56 (m, 2H), 1.53-1.33 (m, 2H), 1.17 (d, 12H).

References

- P. A. Connor, K. D. Dobson and A. J. McQuillan, *Langmuir*, 1999, **15**, 2402-2408.
- R. M. Silverstein, F. X. Webster and D. Kiemie, *Spectrometric Identification of Organic Compounds, 7th Edition*, John Wiely and Sons, Danvers, MA, USA.
 2002; Chapter 2
- 3 D. Taffa, M. Kathiresan and L. Walder, *Langmuir*, 2009, **25**, 5371-5379.
- 4 P. A. Connor and A. J. McQuillan, *Langmuir*, 1999, **15**, 2916-2921.
- 5 A. R. Katritzky, W. Q. Fan and Q. L. Li, *J. Heterocycl. Chem.*, 1988, **25**, 1311-1314.
- K. Jiao, Y. Niu, H. Zhang, L. Zhu and F. Zhao, *J. Chem. Crystallogr.*, 2006, 36, 685-689.