Supporting Information

Bright White Upconversion Emission from Yb³⁺, Er³⁺, and Tm³⁺-Codoped Gd₂O₃ Nanotubes

Kezhi Zheng, Daisheng Zhang, Dan Zhao, Ning Liu, Feng Shi, and Weiping Qin*

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science

and Engineering, Jilin University, Changchun 130012, China

* Corresponding author: wpqin@jlu.edu.cn

Fig. S1 show the XRD patterns of $Gd(OH)_3:10\%Yb^{3+}/1\%Er^{3+}/0.7\%Tm^{3+}$ and $Gd_2O_3:10\%Yb^{3+}/1\%Er^{3+}/0.7\%Tm^{3+}$ nanocrystals. All diffraction peaks can be readily indexed to pure hexagonal $Gd(OH)_3$ and cubic Gd_2O_3 , which are in good agreement with the standard values for the $Gd(OH)_3$ and Gd_2O_3 (JCPDS No.83–2037 and 11–0604), respectively. No other impurity peaks can be detected from the XRD patterns, indicating that the nanocrystals are single-phased and Ln^{3+} ions have effectively incorporated into the $Gd(OH)_3$ and Gd_2O_3 host lattices.

Fig. S1. XRD patterns of (a) $Gd(OH)_3:10\%Yb^{3+}/1\%Er^{3+}/0.7\%Tm^{3+}$ and (b) $Gd_2O_3:10\%Yb^{3+}/1\%Er^{3+}/0.7\%Tm^{3+}$ nanocrystals. The standard data for $Gd(OH)_3$ (JCPDS No.83–2037) and Gd_2O_3 (JCPDS No.11–0604) are also presented in the figure for comparison.

Fig. S2 shows the TGA curve of Gd(OH)₃:10%Yb³⁺/1%Er³⁺/0.7%Tm³⁺ nanocrystals. It can be observed that there are two major stages of rapid weight loss at about 311°C and 420°C, indicating the existence of intermediate phase other than Gd(OH)₃ and Gd₂O₃ during the thermal conversion process. The weight loss for the two stages and the total weight loss are 8.86%, 4.32%, and 13.18%, respectively. The total weight loss is in agreement with the theoretical value of Gd(OH)₃, calculated from the reaction of its complete dehydration to produce Gd₂O₃. Since most of the rare earth compounds can exist in the form of LnOOH, this dehydration process can be supposed to be two steps: Gd(OH)₃ \rightarrow GdOOH + H₂O and 2GdOOH \rightarrow Gd₂O₃ + H₂O. The theoretical weight loss for the two processes is 8.64% and 4.73%, respectively, which is quite close to the experimental data.

Fig. S2. TGA curve of $Gd(OH)_3$:10%Yb³⁺/1%Er³⁺/0.7%Tm³⁺ nanotubes.

Fig. S3 describes the XRD pattern for the product calcinated at 300°C. It fit well with the GdOOH, which has been well addressed by *C Chang et al.* (*Mater. lett.*, 2005, **59**, 1037. and *Nanotechnology*, 2006, **17**, 1981.).

Fig. S3. XRD pattern of GdOOH:10%Yb³⁺/1%Er³⁺/0.7%Tm³⁺