Preferential solvation of glucose and talose in water/acetonitrile mixtures: a molecular dynamics simulation study

Giacomo Saielli^a and Alessandro Bagno^b*

^{*a}</sup>Istituto per la Tecnologia delle Membrane del CNR, Sezione di Padova and ^{<i>b*}Dipartimento di Scienze Chimiche dell'Università di Padova, Via Marzolo, 1 – 35131 – Padova, Italy.</sup>

Supporting Information

Figures 1-3. Radial distribution functions of the 1:1 H ₂ O/ACN mixture	2
Figures 4-6. Radial distribution functions of the 2:1 H ₂ O/ACN mixture	3
Figure 7. Spatial distribution functions of the 1:1 H ₂ O/ACN mixture	4

Figure S1. 1:1 H₂O/ACN mixture. (Left): Average radial distribution function, $g(r_{OwOs})$, of the distance between water oxygen and hydroxyl sugar oxygens. (Right): Average radial distribution function, $g(r_{OwHs})$, of the distance between water oxygen and hydroxyl sugar hydrogens. (black) α -glucose; (red) β -glucose; (green) α -talose; (blue) β -talose.

Figure S2. 1:1 H₂O/ACN mixture. (Left) Average radial distribution function, $g(r_{NaOs})$, of the distance between ACN nitrogen and hydroxyl sugar oxygens. (Right) Average radial distribution function, $g(r_{NaHs})$, of the distance between ACN nitrogen and hydroxyl sugar hydrogens. (black) α -glucose; (red) β -glucose; (green) α -talose; (blue) β -talose.

Figure S3. 1:1 H₂O/ACN mixture. (Left): Average radial distribution function of the distance between water hydrogens and alkyl sugar hydrogens $g(r_{HwCHs})$. (Right): Average radial distribution function, g(r), of the distance between ACN hydrogens and alkyl sugar hydrogens $g(r_{HaCHs})$. (black) α -glucose; (red) β -glucose; (green) α -talose; (blue) β -talose.

Figure S4. 2:1 H₂O/ACN mixture. (Left) Average radial distribution function, $g(r_{OwOs})$, of the distance between water oxygen and hydroxyl sugar oxygens. (Right): Average radial distribution function, $g(r_{OwHs})$, of the distance between water oxygen and hydroxyl sugar hydrogens. (black) α -glucose; (red) β -glucose; (green) α -talose; (blue) β -talose.

Figure S5. 2:1 H₂O/ACN mixture. (Left) Average radial distribution function, $g(r_{NaOs})$, of the distance between ACN nitrogen and hydroxyl sugar oxygens, (Right) Average radial distribution function, $g(r_{NaHs})$, of the distance between ACN nitrogen and hydroxyl sugar hydrogens. (black) α -glucose; (red) β -glucose; (green) α -talose; (blue) β -talose.

Figure S6. 2:1 H₂O/ACN mixture. Average radial distribution function, $g(r_{HwCHs})$, of the distance between water hydrogens and alkyl sugar hydrogens. (Right) Average radial distribution function, $g(r_{HaCHs})$, of the distance between ACN hydrogens and alkyl sugar hydrogens. (black) α -glucose; (red) β -glucose; (green) α -talose; (blue) β -talose.

Figure S7. Spatial density functions (isovalue = 8.0) of the probability to find a water oxygen (blue) and ACN nitrogen (yellow) around (a) α -glucose; (b) β -glucose; (c) α -talose; (d) β -talose. For each panel we show the top and the side view.