Supporting Information

Contrasting guest binding interaction of cucurbit［7－8］urils with neutral red dye： Controlled exchange of multiple guests

Mhejabeen Shaikh，Sharmistha Dutta Choudhury，Jyotirmayee Mohanty，＊Achikanath C．Bhasikuttan，＊ Haridas Pal

10

${ }_{15}$ Fig．S1：Relative fluorescence intensity changes recorded for NRH^{+}－CB8 （a）and $\mathrm{NRH}^{+}-\mathrm{CB} 7$（b）interaction．（c）and（d）represent the recovery of fluorescence signal obtained when Tryptophan or BSA was added to the $\left(\mathrm{NRH}^{+}\right)_{2} . \mathrm{CB8}$ system，respectively．Inset shows the emission wavelength changes during NRH^{+}－CB8 titration（e）and during the titration of $20\left(\mathrm{NRH}^{+}\right)_{2} . \mathrm{CB} 8$ with Tryptophan（f）or BSA（g）

${ }_{25}$ Fig．S2：Absorption spectra of an aqueous solution of $\mathbf{N R H}^{+}$without CB8（a），with CB8（b）．Spectrum（c）represents the absorption spectrum recorded from a concentrated solution of NRH^{+}using a 1 mm path length，indicating the presence of a dimeric species．

（a）	1：1 NR：CB8 Complex NR + CB8 \rightarrow NR．CB8 $\Delta \mathrm{H}_{\mathrm{f}}=-1.23 \mathrm{kcal} / \mathrm{mole}$
	1：1 NRH ${ }^{+}$：CB8 Complex $\mathrm{NRH}^{+}+\mathrm{CB} 8 \rightarrow \mathrm{NRH}^{+} . \mathrm{CB} 8$ $\Delta \mathrm{H}_{\mathrm{F}}=-39.9 \mathrm{kcal} / \mathrm{mole}$
	2：1 NR：CB8 Complex $2 \mathrm{NR}+\mathrm{CB} 8 \rightarrow(\mathrm{NR})$ ． CB 8 $\Delta \mathrm{H}_{\mathrm{f}}=+21.64 \mathrm{kcal} / \mathrm{mole}$
	2：1 NRH $^{+}$：CB8 Complex $2 \mathrm{NRH}^{+}+\mathrm{CB} 8 \rightarrow\left(\mathrm{NRH}^{+}\right)_{2}$ ． CB 8 $\Delta \mathrm{H}_{\mathrm{F}}=-9.5 \mathrm{kcal} / \mathrm{mole}$
	1：1：1 $\mathrm{NRH}^{+}:$CB8： Trp Complex NRH $^{+}+\mathrm{CB} 8+\operatorname{Trp} \rightarrow$ NRH $+\mathrm{CB} 8 . \operatorname{Trp}$ $\Delta \mathrm{H}_{F}=-7.15 \mathrm{kcal} / \mathrm{mole}$

${ }_{30}$ Fig．S3：Computationally optimized geometries of various stoichiometric arrangements for neutral red－CB8 interaction（a－d）． Structure（e）represents the optimized geometry for the NRH^{+}．CB8． Trp Complex．

Fig. S4: The fluorescence spectra recorded for the neutral red-CB8 system at different pHs , maintain the excitation parameters the same

5

Note: 1

The binding curve obtained for $\mathrm{NRH}^{+}-\mathrm{CB} 8-\mathrm{BSA}$ system (Fig.7, 10 inset) were analyzed by the equations according to the following 1:1 interactions

CB8. $\left(\mathrm{NRH}^{+}\right)_{2}+\mathrm{BSA} \longleftrightarrow \mathrm{NRH}^{+} . \mathrm{CB8} . \mathrm{BSA}+\mathrm{NRH}^{+}$	S1
$N R H^{+}+\mathrm{BSA} \longleftrightarrow \mathrm{NRH}^{+} . \mathrm{BSA}$	S2

Taking $[\mathrm{Dye}]_{0}$ and $[\mathrm{BSA}]_{0}$ as the total concentrations of dye and BSA, respectively, eq. S3 applies for the concentration of free (uncomplexed) dye in equilibrium:

30
20
$[D y e]_{e q}=\left\{K_{e q}[D y e]_{0}-K_{e q}[B S A]_{0}-1+\sqrt{\left.\left(K_{e q}[D y e]_{0}+K_{e q}[B S A]_{0}+1\right)^{2}-4 K_{e q}^{2}[D y e]_{0}[B S A]_{0}\right\}} / 2 K_{e q}\right.$
Where [Dye] represents the concentration of CB8 $\bullet\left(\mathrm{NRH}^{+}\right)_{2}$ complex for Eqn $\mathbf{S 1}$ and NRH^{+}for Eqn S2.

35
The fluorescence intensity can therefore be understood as a composite of the fluorescence intensity contributions from the complexed and uncomplexed forms according to eq. S4:

$$
\begin{equation*}
40 \quad I_{f}=I_{\text {Dye }}^{0} \frac{[\text { Dye }]_{e q}}{[\text { Dye }]_{0}}+I_{\text {Dye. BSA }}^{\infty} \frac{[\text { Dye .BSA }]_{\text {eq }}}{[\text { Dye }]_{0}} \tag{S4}
\end{equation*}
$$

where $I_{\text {Dye }}^{0}$ is the initial fluorescence intensity in the absence of CB8 and $I_{\text {Dye.BSA }}^{\infty}$ corresponds to the fluorescence intensity if all the dye molecules in the solution were complexed by BSA. The ${ }_{45}$ change in fluorescence intensity $\left(\Delta \mathrm{I}_{\mathrm{f}}\right)$ can be obtained by rearrangement (eq.S5):
60

$$
\Delta I_{f}^{\lambda}=\left(1-\frac{[\text { Dye }]_{e q}}{[\text { Dye }]_{0}}\left(I_{\text {Dye .BSA }}^{\infty}-I_{\text {Dye }}^{0}\right)\right.
$$

${ }_{50}$ In the fluorescence titrations, we employed the fluorescence intensity as experimental measure. The concentration of (Dye) was kept constant at a particular pH 5 and the concentration of BSA was varied. The binding constants (K) obtained from the nonlinear fittings of the experimental data using Eqn. S5 were
${ }_{55} 2.5 \times 10^{5} \mathrm{M}^{-1}$ for the $\mathrm{CB} 8 \cdot\left(\mathrm{NRH}^{+}\right)_{2}$ complex with BSA and $3 \times 10^{3} \mathrm{M}^{-1}$ for the NRH^{+}with BSA.

