Supporting Information

Contrasting guest binding interaction of cucurbit[7-8]urils with neutral red dye: Controlled exchange of multiple guests

Mhejabeen Shaikh, Sharmistha Dutta Choudhury, Jyotirmayee Mohanty,* Achikanath C. Bhasikuttan,* Haridas Pal

10

¹⁵ Fig. S1: Relative fluorescence intensity changes recorded for NRH⁺-CB8 (a) and NRH⁺-CB7 (b) interaction. (c) and (d) represent the recovery of fluorescence signal obtained when Tryptophan or BSA was added to the (NRH⁺)₂•CB8 system, respectively. Inset shows the emission wavelength changes during NRH⁺-CB8 titration (e) and during the titration of ²⁰ (NRH⁺)₂•CB8 with Tryptophan (f) or BSA (g).

²⁵ Fig. S2: Absorption spectra of an aqueous solution of NRH⁺ without CB8 (a), with CB8 (b). Spectrum (c) represents the absorption spectrum recorded from a concentrated solution of NRH⁺ using a 1mm path length, indicating the presence of a dimeric species.

(a)	<u>1:1 NR:CB8 Complex</u> NR+CB8 → NR.CB8 ΔH_i = -1.23kcal/mole
	1:1 NRH ⁺ :CB8 Complex NRH ⁺ +CB8 → NRH ⁺ .CB8 Δ H _i = -39.9kcal/mole
(c)	2:1 NR:CB8 Complex 2NR+CB8 → (NR) ₂ .CB8 ΔH_i = +21.64kcal/mole
(d)	2:1 NRH ⁺ :CB8 Complex 2NRH ⁺ +CB8 → (NRH ⁺) ₂ .CB8 Δ H _i = -9.5kcal/mole
(e)	1:1:1 NRH ⁺ :CB8: Trp <u>Complex</u> NRH ⁺ +CB8+ Trp → NRH ⁺ .CB8.Trp ΔH_i = -7.15kcal/mole

30 Fig. S3: Computationally optimized geometries of various stoichiometric arrangements for neutral red-CB8 interaction (a-d). Structure (e) represents the optimized geometry for the NRH⁺.CB8. Trp Complex.

Fig. S4: The fluorescence spectra recorded for the neutral red-CB8 system at different pHs, maintain the excitation parameters the same

Note: 1

20

35

The binding curve obtained for NRH⁺-CB8-BSA system (Fig.7, ¹⁰ inset) were analyzed by the equations according to the following 1:1 interactions

 $CB8.(NRH^+)_2 + BSA \longleftrightarrow NRH^+.CB8.BSA + NRH^+$ S1

¹⁵
$$NRH^+ + BSA \longleftrightarrow NRH^+.BSA$$
 S2

Taking $[Dye]_0$ and $[BSA]_0$ as the total concentrations of dye and BSA, respectively, eq. S3 applies for the concentration of free (uncomplexed) dye in equilibrium:

$$[Dye]_{eq} = \{K_{eq}[Dye]_0 - K_{eq}[BSA]_0 - 1 + \sqrt{(K_{eq}[Dye]_0 + K_{eq}[BSA]_0 + 1)^2 - 4K_{eq}^2[Dye]_0[BSA]_0\}} / 2K_{eq}$$
S3

25

30

Where [Dye] represents the concentration of CB8 \cdot (NRH⁺)₂ complex for Eqn S1 and NRH⁺ for Eqn S2.

The fluorescence intensity can therefore be understood as a composite of the fluorescence intensity contributions from the complexed and uncomplexed forms according to eq. S4:

⁴⁰
$$I_f = I_{Dye}^0 \frac{[Dye]_{eq}}{[Dye]_0} + I_{Dye\ .BSA}^\infty \frac{[Dye\ .BSA]_{eq}}{[Dye]_0}$$
 S4

where I_{Dye}^{0} is the initial fluorescence intensity in the absence of CB8 and $I_{Dye,BSA}^{\infty}$ corresponds to the fluorescence intensity if all the dye molecules in the solution were complexed by BSA. The ⁴⁵ change in fluorescence intensity (ΔI_{f}) can be obtained by rearrangement (eq.S5):

$$\Delta I_{f}^{\lambda} = (1 - \frac{[Dye]_{eq}}{[Dye]_{0}} (I_{Dye,BSA}^{\infty} - I_{Dye}^{0})$$
 S5

- ⁵⁰ In the fluorescence titrations, we employed the fluorescence intensity as experimental measure. The concentration of (Dye) was kept constant at a particular pH 5 and the concentration of BSA was varied. The binding constants (K) obtained from the nonlinear fittings of the experimental data using Eqn. S5 were
- $_{55}$ 2.5x10⁵ M^{-1} for the CB8•(NRH⁺)₂ complex with BSA and 3x10³ M^{-1} for the NRH⁺ with BSA.