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1 Derivations for the quasi-spherical and nanotube ir-

regular polarizabilities, eqns (97-98)

We start the derivation of eqns (97-98) from a London-like formula for the dipole-dipole dis-
persion interaction between two C2v monomers using the expression [1]
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Here I A and I B are the ionization potentials of monomers A and B respectively. The αXX ,
αY Y and αZZ are the principal-axis components of the polarizability tensors of the monomers,
assumed to be parallel with the intermolecular coordinate system (XY Z). Note that the
contribution from the intermolecular axis Z is four times larger than the two contributions
perpendicular to Z. The R is the intermolecular distance.
Consider first a spherical shell with a polarizability density ρii = dαii/ds, ds being a surface
element on the surface S. From eqn (1), assuming αA
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⊥ and αA
ZZ ≡ αA

‖ , we obtain

∆E = −

1

4

IAIB

IA + IB

∫

S

[

2αA
⊥ρB

⊥ + 4αA
‖ ρB

‖

]

R−6ds. (2)

For an isotropic case, αA
⊥ = αA

‖ = αA, ρB
⊥ = ρB

‖ = ρB, giving
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A comparison with eqn (69) of the main paper gives for a sphere

ᾱ†B
1 = 8πρBR−4. (4)
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For an isotropic A on the axis, z, of a nanotube B we similarly get
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where R is the radius of the tube, and r the distance from A to the surface element. Using eqn
(3.249.1) of Ryzhik and Gradshteyn [2],
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yielding for the thin-walled cylinder

ᾱ†B
1 =

3

2
π2ρBR−4. (7)

The sphere/tube ratio for the same R becomes 16/3π. We repeat that this line of thought
would only be valid if the contributions to eqn(1) could be independently integrated, which for
the fullerenes is a bad approximation.

2 Explicit figures for the He2, He3, and A · · ·C6H6 model

systems
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Figure 1: The geometry of the He2 system.
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Figure 2: The geometry of the He3 system.
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Figure 3: The geometry for the A · · · C6H6 model system. r was taken as 4.0 Å.
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