Supplementary Information for the article: Carbon and proton shielding tensors in methyl halides

Anu M. Kantola^{*} Perttu Lantto^{*,†} J

Juha Vaara^{*,‡}

Jukka Jokisaari*

The molecular geometries used in theoretical computations and experimental analysis are shown in Table S1. Table S2 lists the theoretically computed temperature derivatives of ¹³C and ¹H shielding constants and anisotropies. In Table S3, the dependence of nonrelativistic (NR) and relativistic (BPPT) results on the electron correlation treatment is shown. The breakdown of the BPPT(RAS) results for σ and $\Delta \sigma$ into the individual contributions is presented in Tables S4 and S5 for all methyl halides at their r_e geometries. The corresponding r_e data as well as the rovibrational corrections to each individual contribution at a given temperature at the MP2 and DFT(B3LYP) levels of theory, are presented in Tables S6 – S9. Eqs. (S1) and (S2) express the rovibrational averages of ¹³C and ¹H shielding parameters. The displacement averages at T = 300 K of the molecular symmetry coordinates in those equations are listed for each methyl halide in Table S10. Finally, the rovibrational contributions at T = 300 K for each shielding parameter are shown in Tables S11 – S14.

^{*}NMR Research Group, Department of Physics, P.O. Box 3000, FIN-90014, University of Oulu, Finland [†]Corresponding author, E-mail: perttu.lantto@oulu.fi

[‡]Laboratory of Physical Chemistry, Department of Chemistry, P.O. Box 55 (A. I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland

Molecule	Geo ^b	$r_{\rm C-X}$	$r_{\rm C-H}$	∠XCH
CH ₃ F	r _e	1.383	1.0860	108.80
	r_{α}	1.391	1.0979	108.81
CH ₃ Cl	r _e	1.776	1.0854	108.58
	r_{α}	1.786	1.0944	108.43
CH ₃ Br	r _e	1.934	1.0823	107.73
	r_{α}	1.943	1.0930	107.69
CH ₃ I	r _e	2.132	1.0840	107.68
	r_{α}	2.142	1.0939	107.66

Table S1: Molecular geometries. ^a

^{*a*}Type of molecular geometry either r_e for equilibrium geometry or $r_\alpha(300 \text{ K})$ for geometry where the nuclei are in their average locations corresponding to the temperature of 300 K. The geometries used are the same as in Refs. 1 (r_e) and 2 ($r_\alpha(300 \text{ K})$). ¹³C¹H₃X isotopomers with X=¹⁹F, ³⁵Cl, ⁷⁹Br, and ¹²⁷I.

Table S2: Quantum-chemically calculated temperature derivatives (in ppb/K) of the ¹H and ¹³C shielding constants and anisotropies in gas phase at the combined nonrelativistic MP2 and relativistic DFT(B3LYP) levels.^{*a*}

Molecule	$\sigma_{\rm C}$	$\Delta \sigma_{\rm C}$	$\sigma_{ m H}$	$\Delta \sigma_{ m H}$
CH ₃ F	-0.715	0.553	-0.054	-0.028
CH ₃ Cl	-1.028	0.631	-0.059	-0.054
CH ₃ Br	-1.024	0.376	-0.050	-0.036
CH ₃ I	-0.481	-0.774	-0.065	-0.101

 a Derivatives are calculated in the temperature range from 280 K to 350 K for the isotopomers $\rm CH_3{}^{19}F, \rm CH_3{}^{35}Cl, \rm CH_3{}^{79}Br,$ and $\rm CH_3{}^{127}I.$

Table S3: Calculated nonrelativistic (NR) shielding constants (σ) and anisotropies ($\Delta \sigma$) with respect to the molecular C_3 axis in CH₃X (X = F - I). Relativistic BPPT corrections are also indicated.^{*a*}

				(5		$\Delta \sigma$					
Nucleus	Term	Method	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I		
С	NR	HF	124.61	164.52	173.31	194.51	95.05	45.25	36.90	10.89		
		MP2	121.42	167.17	177.94	200.19	107.84	49.29	38.10	10.60		
		CCSD	123.61	167.25	177.51	198.83	101.98	46.23	35.72	9.46		
		CCSD(T)	122.90	167.17	177.63	199.01	103.41	46.72	35.94	9.63		
		RAS	125.43	168.18	178.28	199.55	100.35	46.28	37.01	9.80		
		B3LYP	105.94	150.93	160.22	182.19	111.34	53.66	44.68	17.51		
		BHandHLYP	113.36	156.53	165.64	187.43	105.43	50.62	41.85	14.91		
	BPPT	RAS	1.24	2.88	10.30	28.96	-0.32	-2.86	-14.57	-43.93		
		B3LYP	1.33	3.38	13.50	36.97	-0.44	-3.61	-19.39	-56.31		
		BHandHLYP	1.31	3.27	12.79	35.48	-0.42	-3.45	-18.34	-54.01		
Н	NR	HF	27.98	29.09	29.33	29.92	4.08	4.75	5.94	7.27		
		MP2	27.40	28.67	28.98	29.60	4.60	4.99	6.14	7.45		
		CCSD	27.60	28.88	29.17	29.79	4.42	4.86	6.04	7.35		
		CCSD(T)	27.50	28.79	29.09	29.71	4.53	4.95	6.13	7.44		
		RAS	27.74	28.87	29.16	29.81	4.23	4.81	5.91	7.27		
		B3LYP	27.44	28.73	29.04	29.67	5.08	5.51	6.67	7.93		
		BHandHLYP	27.62	28.83	29.11	29.73	4.62	5.16	6.32	7.61		
	BPPT	RAS	0.03	0.03	0.03	-0.38	-0.01	0.00	0.12	0.79		
		B3LYP	0.03	0.04	0.07	-0.28	0.00	-0.01	0.15	0.83		
		BHandHLYP	0.03	0.04	0.07	-0.33	-0.01	-0.01	0.13	0.86		

^{*a*} Results in ppm at the equilibrium geometry (see text). The HIV(C,H)/FIV(X) basis is used.

Table S4: Ab initio nonrelativistic (NR) and relativistic (BPPT) contributions to ¹³C shielding constants (σ) and anisotropies ($\Delta \sigma$) in CH₃X (X = H, F, Cl, Br, I) at the equilibrium geometry.^{*a*}

			$\sigma_{\rm C}$				Δc	$\sigma_{\rm C}$		
Term	CH ₄	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I	
NR	199.19	122.90	167.17	177.63	199.01	103.41	46.72	35.94	9.63	
con	-0.74	-0.74	-0.74	-0.74	-0.74	_	_	_	_	
dip	-	-	_	-	_	0.00	0.00	0.00	0.00	
d-KE	-0.56	-0.55	-0.55	-0.55	-0.55	-0.02	-0.02	-0.02	-0.02	
p-OZ	-0.01	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.02	-0.01	
<i>d</i> /mv	0.96	0.97	0.99	1.06	1.16	-0.02	-0.07	-0.33	-0.74	
d/Dar	-0.58	-0.60	-0.62	-0.69	-0.79	0.02	0.05	0.17	0.36	
p/OZ-KE	0.03	0.01	0.01	0.01	0.01	0.04	0.04	0.04	0.03	
p-KE/OZ	0.08	0.11	0.08	0.07	0.06	-0.04	0.00	0.01	0.04	
FC/SZ-KE	2.53	2.52	2.52	2.52	2.52	_	_	_	-	
SD/SZ-KE	_	_	_	_	_	-0.01	-0.01	-0.01	-0.01	
FC-II(1)	-0.45	-0.45	-0.45	-0.45	-0.44	0.02	0.02	0.03	0.04	
SD-II(1)	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	
<i>p</i> /mv	-0.05	-0.30	-0.49	-1.98	-5.38	0.31	0.57	2.70	7.57	
<i>p</i> /Dar	-0.04	0.05	0.11	0.31	1.08	-0.14	-0.20	-0.44	-1.51	
FC-I(1)	-0.03	0.54	2.78	13.14	38.18	-0.90	-4.31	-20.06	-57.85	
SD-I(1)	-0.03	-0.03	-0.13	-0.85	-3.28	0.04	0.16	1.02	3.89	
FC-I(2)	-0.03	-0.29	-0.67	-1.65	-3.09	0.40	0.97	2.46	4.62	
SD-I(2)	0.01	0.00	0.03	0.11	0.27	-0.02	-0.04	-0.14	-0.31	
TOTAL(SR) ^d	-0.92	-1.05	-1.21	-2.51	-5.15	0.15	0.35	2.12	5.70	
TOTAL(SO) ^e	2.01	2.29	4.09	12.81	34.16	-0.46	-3.21	-16.69	-49.61	
BPPT- 5^{f}	-0.10	0.08	1.71	9.13	27.83	-0.34	-2.85	-14.44	-43.56	
$BPPT^{g}$	1.09	1.24	2.88	10.30	29.00	-0.32	-2.86	-14.57	-43.91	
TOTAL ^h	200.28	122.98	168.88	186.76	226.85	103.09	43.86	21.37	-34.28	

^a NR terms computed at CCSD(T) level with HIV(C,H)/FIV(X) basis set. BPPT contributions

were computed at RAS level with HIVu2(C,H)/FIV(X) basis set.

^{*b*} Computed with HIV(C,H)/FIV(X) basis set.

^c Two-electron terms computed at DFT(B3LYP) level with HIVu2(C,H)/FIV(X) basis set.

 d Sum of all electron-spin-independent BPPT terms.

^e Sum of all electron-spin-dependent BPPT terms.

^{*f*} Sum of terms [*p*-KE/OZ, *p*/mv, *p*/Dar, FC-I(1&2), and SD-I(1&2)], which have been found the most important for heavy-atom δ and $\Delta \sigma$.

^g TOTAL(SR)+TOTAL(SO).

^h NR+BPPT.

Table S5: Ab initio nonrelativistic (NR) and relativistic (BPPT) contributions to ¹H shielding constants (σ) and anisotropies ($\Delta \sigma$) in CH₃X (X = H, F, Cl, Br, I) at the equilibrium geometry.^{*a*}

	σ _Η							Δα	ΣH	
Term	CH ₄	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I	-	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I
NR	31.46	27.50	28.79	29.09	29.71		4.53	4.95	6.13	7.44
con	0.00	0.00	0.00	0.00	0.00		_	_	-	-
dip	_	_	_	_	_		0.00	0.00	0.00	0.00
d-KE	0.00	0.01	0.01	0.01	0.01		-0.01	-0.01	-0.02	-0.02
p-OZ	0.00	0.01	0.01	0.01	0.01		-0.01	-0.01	-0.01	-0.01
<i>d</i> /mv	0.00	0.00	0.01	0.05	0.11		0.01	0.00	-0.06	-0.21
d/Dar	0.00	0.00	-0.01	-0.06	-0.12		-0.01	0.00	0.01	0.07
p/OZ-KE	0.00	-0.01	-0.02	-0.02	-0.02		0.02	0.02	0.02	0.03
p-KE/OZ	0.00	-0.01	-0.02	-0.02	-0.02		0.02	0.02	0.02	0.02
FC/SZ-KE	0.00	0.00	0.00	0.00	0.00		_	-	_	_
SD/SZ-KE	_	_	-	_	_		0.00	0.00	0.00	0.00
FC-II(1)	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
SD-II(1)	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
<i>p</i> /mv	-0.01	0.00	0.00	-0.04	-0.11		-0.01	-0.01	0.01	0.10
<i>p</i> /Dar	0.00	0.01	0.01	0.03	0.06		0.00	0.00	0.00	-0.02
FC-I(1)	0.02	0.05	0.05	0.04	-0.36		-0.01	0.02	0.14	0.85
SD-I(1)	0.00	0.00	0.01	0.03	0.05		0.00	0.01	0.03	0.07
$FC-I(2)^{c}$	-0.01	-0.01	-0.01	-0.01	0.02		-0.01	-0.02	-0.04	-0.08
$SD-I(2)^{c}$	0.00	0.00	0.00	0.00	0.00		0.00	0.00	-0.01	-0.01
$TOTAL(SR)^d$	-0.01	-0.01	-0.01	-0.03	-0.09		0.00	0.00	-0.02	-0.04
TOTAL(SO) ^e	0.01	0.04	0.04	0.06	-0.29		-0.02	0.00	0.13	0.83
BPPT- 5^{f}	0.01	0.03	0.04	0.04	-0.36		-0.02	0.01	0.17	0.94
\mathbf{BPPT}^{g}	0.00	0.03	0.03	0.03	-0.38		-0.01	0.00	0.12	0.79
TOTAL ^h	31.46	27.53	28.82	29.12	29.32		4.52	4.96	6.25	8.24

^{*a*} See footnotes in Table S4.

Table S6: Nonrelativistic (NR) and relativistic (BPPT) terms as well as their rovibrational corrections (at 300 K and/or 350 K) at the DFT(B3LYP) level for the ¹³C shielding constant, $\sigma_{\rm C}$ in CH₃X (X = F - I).^{*a*}

	CU	Г	CU	CI				CULI	
	CH	3F	CH	301		_H ₃ Br		CH ₃ I	
	r_e	300 K	r _e	300 K	r_e	300 K	r_e	300 K	350 K
NR^b	104.89	-4.78	150.14	-4.03	159.4	8 -4.11	182.19	-3.47	-3.55
	(121.42)	(-3.81)	(167.17)	(-2.86)	(177.94	4) (-2.78)	(200.18)	(-2.14)	(-2.20)
con	-0.74	0.00	-0.74	0.00	-0.74	0.00	-0.74	0.00	0.00
d-KE	-0.55	0.00	-0.56	0.00	-0.56	0.00	-0.56	0.00	0.00
p-OZ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
d/mv	0.98	0.00	1.00	0.00	1.08	0.00	1.20	0.00	0.00
d/Dar	-0.60	0.00	-0.62	0.00	-0.70	0.00	-0.81	0.00	0.00
p/OZ-KE	0.01	0.00	0.01	0.00	0.01	0.00	0.02	0.00	0.00
p-KE/OZ	0.14	0.00	0.10	0.00	0.10	0.00	0.08	0.00	0.00
FC/SZ-KE	2.53	0.00	2.54	0.00	2.54	0.00	2.54	0.00	0.00
FC-II(1)	-0.45	0.00	-0.45	0.00	-0.45	0.00	-0.45	0.00	0.00
SD-II(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<i>p/</i> mv	-0.39	-0.01	-0.61	-0.02	-2.18	-0.09	-5.39	-0.19	-0.17
p/Dar	0.07	0.00	0.14	0.00	0.35	0.04	0.86	0.09	0.08
FC-I(1)	0.66	0.03	3.35	0.16	16.64	1.01	46.99	3.27	3.33
SD-I(1)	-0.04	0.00	-0.15	-0.01	-1.05	-0.04	-3.95	-0.17	-0.19
FC-I(2)	-0.29	-0.01	-0.67	-0.03	-1.65	-0.10	-3.09	-0.21	-0.22
SD-I(2)	0.00	0.00	0.03	0.00	0.11	0.00	0.27	0.01	0.01
BPPT	1.33	0.01	3.38	0.12	13.50	0.83	36.97	2.82	2.85
TOTAL ^c	106.22	-4.77	153.52	-3.91	172.9	7 -3.28	219.16	-0.65	-0.69
		(-3.80)		(-2.74)		(-1.95)		(0.68)	(0.66)

 ${}^{a}r_{e}$ denotes calculation with HIVu2(C,H)/FIV(X) basis set at equilibrium geometry. The numbers under the columns denoted 300 K and 350 K are rovibrational contributions to be added to the equilibrium value, at the indicated temperature for the isotopomers $CH_3^{19}F$, $CH_3^{35}Cl$, $CH_3^{79}Br$, and $CH_3^{127}I$. BPPT is a sum of the all BPPT terms. ^b The NR results at the MP2 level with HIV(C,H)/FIV(X) basis are in parentheses.

^c TOTAL = NR + BPPT at the DFT(B3LYP) level. In parentheses the total rovibrational

averages as a sum of NR(MP2) and BPPT(DFT/B3LYP) rovibrational corrections, used for the best results of the article.

Table S7: Nonrelativistic (NR) and relativistic (BPPT) terms as well as their rovibrational corrections (at 300 K and/or 350 K) at the DFT(B3LYP) level for the ¹³C shielding anisotropy, $\Delta \sigma_{\rm C}$ in CH₃X (X = F – I).^{*a*}

	CH	3F	CH	₃ Cl	CH	3Br			CH ₃ I	
	r _e	300 K	r _e	300 K	r_e	300 K		r _e	300 K	350 K
NR	111.89	-0.08	53.87	-1.19	44.83	-2.01		17.51	-2.91	-2.88
	(107.84)	(-0.01)	(49.29)	(-1.17)	(38.10)	(-1.94)		(10.60)	(-2.81)	(-2.79)
dip	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
d-KE	-0.02	0.00	-0.02	0.00	-0.02	0.00	0.00 -0.		0.00	0.00
p-OZ	-0.01	0.00	-0.01	0.00	-0.01	0.00		-0.01	0.00	0.00
d/mv	-0.02	0.00	-0.07	0.00	-0.32	0.00		-0.75	0.01	0.01
d/Dar	0.02	0.00	0.05	0.00	0.16	0.00		0.36	0.00	0.00
p/OZ-KE	0.04	0.00	0.03	0.00	0.03	0.00		0.03	0.00	0.00
p-KE/OZ	-0.06	0.00	-0.01	0.00	0.00	0.00		0.03	0.00	0.00
SD/SZ-KE	-0.01	0.00	-0.01	0.00	-0.01	0.00		-0.01	0.00	0.00
FC-II(1)	0.02	0.00	0.02	0.00	0.03	0.00		0.04	0.00	0.00
SD-II(1)	0.01	0.00	0.01	0.00	0.01	0.00		0.01	0.00	0.00
<i>p</i> /mv	0.40	0.00	0.68	0.00	2.93	0.05		7.46	0.10	0.07
p/Dar	-0.18	0.00	-0.25	0.00	-0.49	-0.03		-1.16	-0.07	-0.05
FC-I(1)	-1.07	-0.04	-5.16	-0.23	-25.29	-1.40		-71.06	-4.57	-4.65
SD-I(1)	0.05	0.01	0.20	0.02	1.27	0.11		4.46	0.33	0.35
FC-I(2)	0.40	0.02	0.97	0.04	2.46	0.14		4.62	0.30	0.30
SD-I(2)	-0.02	0.00	-0.04	0.00	-0.14	-0.01		-0.31	-0.02	-0.02
BPPT	-0.44	-0.02	-3.61	-0.17	-19.39	-1.15		-56.31	-3.93	-3.99
TOTAL	111.45	-0.10	50.26	-1.35	25.44	-3.15		-38.80	-6.84	-6.87
		(-0.03)		(-1.37)		(-3.09)			(-6.74)	(-6.78)

^{*a*} See footnotes in Table S6.

Table S8: Nonrelativistic (NR) and relativistic (BPPT) terms as well as their rovibrational corrections (at 300 K and/or 350 K) at the DFT(B3LYP) level for the ¹H shielding constant, $\sigma_{\rm H}$ in CH₃X (X = F - I).^{*a*}

	CH	I ₃ F	CH	₃ Cl	CH	₃ Br		CH ₃ I	
	r _e	300 K	r _e	300 K	 r_e	300 K	r _e	300 K	350 K
NR	27.45	-0.63	28.73	-0.59	29.04	-0.63	29.67	-0.60	-0.60
	(27.40)	(-0.63)	(28.67)	(-0.58)	(28.98)	(-0.62)	(29.59)	(-0.59)	(-0.59)
con	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
d-KE	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00
p-OZ	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00
<i>d</i> /mv	0.00	0.00	0.01	0.00	0.05	0.00	0.11	0.01	0.01
<i>d</i> /Dar	0.00	0.00	-0.01	0.00	-0.06	0.00	-0.12	0.00	0.00
p/OZ-KE	-0.01	0.00	-0.02	0.00	-0.02	0.00	-0.02	0.00	0.00
p-KE/OZ	-0.01	0.00	-0.02	0.00	-0.02	0.00	-0.02	0.00	0.00
FC/SZ-KE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FC-II(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SD-II(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<i>p</i> /mv	-0.01	0.00	-0.01	0.00	-0.05	0.00	-0.12	0.00	0.00
p/Dar	0.02	0.00	0.02	0.00	0.04	0.00	0.06	0.00	0.00
FC-I(1)	0.05	0.01	0.06	0.01	0.09	0.04	-0.26	0.03	0.03
SD-I(1)	0.00	0.00	0.01	0.00	0.03	0.00	0.06	0.01	0.01
FC-I(2)	-0.01	0.00	-0.01	0.00	-0.01	0.00	0.02	0.00	0.00
SD-I(2)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
BPPT	0.03	0.00	0.04	0.01	0.07	0.04	-0.28	0.04	0.03
TOTAL	27.47	-0.63	28.77	-0.57	29.12	-0.59	29.39	-0.56	-0.57
		(-0.63)		(-0.56)		(-0.58)		(-0.55)	(-0.56)

^{*a*} See footnotes in Table S6.

Table S9: Nonrelativistic (NR) and relativistic (BPPT) terms as well as their rovibrational corrections (at 300 K and/or 350 K) at the DFT(B3LYP) level for the ¹H shielding anisotropy, $\Delta \sigma_{\rm H}$ in CH₃X (X = F – I).^{*a*}

	CI	H ₃ F	CH	I ₃ Cl	C	H ₃ Br		CH ₃ I	
	r _e	300 K	r _e	300 K	r _e	300 K	r _e	300 K	350 K
NR	5.08	-0.03	5.51	-0.04	6.67	-0.09	7.93	-0.13	-0.13
	(4.60)	(-0.05)	(4.99)	(-0.06)	(6.14)	(-0.03)	(7.45)	(-0.16)	(-0.17)
dip	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
d-KE	-0.01	0.00	-0.01	0.00	-0.02	0.00	-0.02	0.00	0.00
p-OZ	-0.01	0.00	-0.01	0.00	-0.01	0.00	-0.01	0.00	0.00
d/mv	0.01	0.00	0.00	0.00	-0.05	0.00	-0.17	0.00	0.00
d/Dar	-0.01	0.00	0.00	0.00	0.01	0.00	0.04	0.00	0.00
p/OZ-KE	0.02	0.00	0.02	0.00	0.02	0.00	0.03	0.00	0.00
p-KE/OZ	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.00
SD/SZ-KE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FC-II(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SD-II(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<i>p</i> /mv	-0.01	0.00	-0.01	0.00	0.03	0.00	0.09	-0.01	-0.01
<i>p</i> /Dar	-0.01	0.00	-0.01	0.00	-0.01	0.00	-0.02	0.01	0.01
FC-I(1)	0.00	0.00	0.03	0.00	0.15	0.00	0.85	0.04	0.05
SD-I(1)	0.01	0.00	0.01	0.00	0.05	0.00	0.10	-0.01	-0.01
FC-I(2)	-0.01	0.00	-0.02	0.00	-0.04	0.00	-0.08	0.00	-0.01
SD-I(2)	0.00	0.00	0.00	0.00	-0.01	0.00	-0.01	0.00	0.00
BPPT	0.00	0.00	0.02	0.00	0.15	-0.01	0.83	0.02	0.03
TOTAL	5.07	-0.03	5.54	-0.05	6.82	-0.10	8.76	-0.10	-0.11
		(-0.05)		(-0.07)		(-0.4)		(-0.13)	(-0.14)

^{*a*} See footnotes in Table S6.

For ¹³C in $C_{3\nu}$ site symmetry the thermal averages of shielding parameters can be written as

$$\langle \boldsymbol{\sigma}_{C} \rangle^{T} = \boldsymbol{\sigma}_{e} + \overbrace{\boldsymbol{\sigma}_{1} \langle \boldsymbol{S}_{1} \rangle^{T}}^{=\langle \boldsymbol{\sigma}_{1} \rangle^{T}} + \boldsymbol{\sigma}_{2} \langle \boldsymbol{S}_{2} \rangle^{T} + \boldsymbol{\sigma}_{3} \langle \boldsymbol{S}_{3} \rangle^{T}$$

$$+ \frac{1}{2} \boldsymbol{\sigma}_{11} \langle \boldsymbol{S}_{1} \boldsymbol{S}_{1} \rangle^{T} + \frac{1}{2} \boldsymbol{\sigma}_{22} \langle \boldsymbol{S}_{2} \boldsymbol{S}_{2} \rangle^{T} + \frac{1}{2} \boldsymbol{\sigma}_{33} \langle \boldsymbol{S}_{3} \boldsymbol{S}_{3} \rangle^{T}$$

$$+ \boldsymbol{\sigma}_{12} \langle \boldsymbol{S}_{1} \boldsymbol{S}_{2} \rangle^{T} + \boldsymbol{\sigma}_{13} \langle \boldsymbol{S}_{1} \boldsymbol{S}_{3} \rangle^{T} + \boldsymbol{\sigma}_{23} \langle \boldsymbol{S}_{2} \boldsymbol{S}_{3} \rangle^{T}$$

$$+ \boldsymbol{\sigma}_{44} \langle \boldsymbol{S}_{4} \boldsymbol{S}_{4} \rangle^{T} + \boldsymbol{\sigma}_{55} \langle \boldsymbol{S}_{5} \boldsymbol{S}_{5} \rangle^{T} + \boldsymbol{\sigma}_{66} \langle \boldsymbol{S}_{6} \boldsymbol{S}_{6} \rangle^{T}$$

$$+ 2 \boldsymbol{\sigma}_{45} \langle \boldsymbol{S}_{4} \boldsymbol{S}_{5} \rangle^{T} + 2 \boldsymbol{\sigma}_{46} \langle \boldsymbol{S}_{4} \boldsymbol{S}_{6} \rangle^{T} + \underbrace{2 \boldsymbol{\sigma}_{56} \langle \boldsymbol{S}_{5} \boldsymbol{S}_{6} \rangle^{T}$$

$$= \langle \boldsymbol{\sigma}_{56} \rangle^{T}$$

and for ¹H in C_s site symmetry the thermal averages of shielding parameters are

$$\langle \sigma_{\rm H} \rangle^{T} = \sigma_{e} + \overbrace{\sigma_{1} \langle S_{1} \rangle^{T}}^{=\langle \sigma_{1} \rangle^{T}} + \sigma_{2} \langle S_{2} \rangle^{T} + \sigma_{3} \langle S_{3} \rangle^{T} + \frac{1}{2} \sigma_{11} \langle S_{1} S_{1} \rangle^{T} + \frac{1}{2} \sigma_{22} \langle S_{2} S_{2} \rangle^{T} + \frac{1}{2} \sigma_{33} \langle S_{3} S_{3} \rangle^{T} + \frac{1}{2} \sigma_{4a4a} \langle S_{4} S_{4} \rangle^{T} + \frac{1}{2} \sigma_{5a5a} \langle S_{5} S_{5} \rangle^{T} + \frac{1}{2} \sigma_{6a6a} \langle S_{6} S_{6} \rangle^{T} + \frac{1}{2} \sigma_{4b4b} \langle S_{4} S_{4} \rangle^{T} + \frac{1}{2} \sigma_{5b5b} \langle S_{5} S_{5} \rangle^{T} + \frac{1}{2} \sigma_{6b6b} \langle S_{6} S_{6} \rangle^{T} + \sigma_{12} \langle S_{1} S_{2} \rangle^{T} + \sigma_{13} \langle S_{1} S_{3} \rangle^{T} + \sigma_{23} \langle S_{2} S_{3} \rangle^{T}$$
(S2)

$$+ \sigma_{4a5a} \langle S_{4} S_{5} \rangle^{T} + \sigma_{4a6a} \langle S_{4} S_{6} \rangle^{T} + \sigma_{5a6a} \langle S_{5} S_{6} \rangle^{T} + \sigma_{4b5b} \langle S_{4} S_{5} \rangle^{T} + \sigma_{4b6b} \langle S_{4} S_{6} \rangle^{T} + \underbrace{\sigma_{5b6b} \langle S_{5} S_{6} \rangle^{T}}_{=\langle \sigma_{5b6b} \rangle^{T}}.$$

See, *e.g.*, Ref. 3 for the definitions of the symmetry coordinates S_i .

Table S10: Linear, $\langle S_i \rangle^T$ and quadratic, $\langle S_i S_j \rangle^T$, averages of molecular symmetry coordinates at T = 300 K in ¹³CH₃X ($X = {}^{19}$ F, ³⁵Cl, ⁷⁹Br, ¹²⁷I).^{*a*}

	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I
$\langle S_1 \rangle^T$	0.0383	0.0353	0.0391	0.0388
$\langle S_2 \rangle^T$	-0.0033	0.0029	-0.0022	-0.0035
$\langle S_3 \rangle^T$	0.0090	0.0116	0.0111	0.0116
$\langle S_1 S_1 \rangle^T$	0.0057	0.0056	0.0055	0.0055
$\langle S_1 S_2 \rangle^T$	-0.0007	-0.0005	-0.0006	-0.0007
$\langle S_1 S_3 \rangle^T$	-0.0003	-0.0003	-0.0003	-0.0003
$\langle S_2 S_2 \rangle^T$	0.0227	0.0243	0.0247	0.0256
$\langle S_2 S_3 \rangle^T$	0.0022	0.0026	0.0028	0.0030
$\langle S_3 S_3 \rangle^T$	0.0021	0.0025	0.0026	0.0030
$\langle S_4 S_4 \rangle^T$	0.0118	0.0117	0.0117	0.0116
$\langle S_4 S_5 \rangle^T$	0.0019	0.0019	0.0020	0.0020
$\langle S_4 S_6 \rangle^T$	-0.0012	-0.0010	-0.0010	-0.0012
$\langle S_5 S_5 \rangle^T$	0.0524	0.0536	0.0546	0.0548
$\langle S_5 S_6 \rangle^T$	0.0049	0.0043	0.0043	0.0043
$\langle S_6 S_6 \rangle^T$	0.0276	0.0298	0.0315	0.0338

^{*a*} $\langle S_m S_n \rangle^T = \langle S_{ma} S_{na} \rangle^T = \langle S_{mb} S_{nb} \rangle^T$ for m, n = 4, 5, 6. In Å and rad units.

	CH	H ₃ F	CH	l ₃ Cl		CH	I ₃ Br	CI	H ₃ I
	NR	BPPT	NR	BPPT	•	NR	BPPT	NR	BPPT
$\langle \sigma_1 \rangle^T$	-2.98	0.01	-3.02	0.08		-3.31	0.58	-3.21	1.85
$\langle \sigma_2 angle^T$	0.05	0.00	0.01	0.00		-0.02	0.03	-0.06	0.15
$\langle \sigma_3 \rangle^T$	-0.81	0.01	-1.11	0.03		-1.09	0.16	-1.16	0.42
$\langle \sigma_{11} \rangle^T$	-0.14	0.00	-0.20	0.00		-0.22	0.03	-0.24	0.12
$\langle \sigma_{12} \rangle^T$	0.00	0.00	0.00	0.00		-0.01	0.00	-0.01	0.01
$\langle \sigma_{13} \rangle^T$	-0.01	0.00	-0.02	0.00		-0.02	0.00	-0.02	-0.01
$\langle \sigma_{22} \rangle^T$	0.31	0.00	0.87	-0.01		1.04	-0.08	1.30	-0.22
$\langle \sigma_{23} \rangle^T$	0.03	0.00	-0.04	-0.02		-0.06	-0.13	-0.11	-0.39
$\langle \sigma_{33} \rangle^T$	-0.21	0.00	-0.18	0.01		-0.14	0.08	-0.10	0.25
$\langle \sigma_{\! 44} \rangle^T$	-0.79	0.00	-0.89	-0.01		-0.91	-0.04	-0.93	-0.11
$\langle \sigma_{45} \rangle^T$	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.01
$\langle \sigma_{46} \rangle^T$	0.00	0.00	0.03	0.00		0.05	0.00	0.08	0.01
$\langle \sigma_{55} \rangle^T$	0.82	0.00	1.05	-0.01		1.08	-0.05	1.19	-0.12
$\langle \sigma_{56} \rangle^T$	0.01	0.00	0.02	0.00		0.02	0.00	0.02	0.00
$\langle \sigma_{66} angle^T$	-0.11	0.00	0.61	0.04		0.80	0.25	1.12	0.86
Sum	-3.81	0.01	-2.86	0.12		-2.78	0.83	-2.14	2.82

Table S11: Computational rovibrational contributions to the ¹³C nuclear shielding constant, $\langle \sigma_i \rangle^T$, at T = 300 K for CH₃X ($X = {}^{19}$ F, 35 Cl, 79 Br, 127 I).^{*a*}

^{*a*} In ppm. See Eq. (S1).

	CH ₃ F		CH	I3Cl		CH	l ₃ Br	CI	H ₃ I	
	NR	BPPT	NR	BPPT	•	NR	BPPT	NR	BPPT	•
$\langle \Delta \sigma_1 \rangle^T$	-2.28	-0.02	-1.65	-0.12		-1.84	-0.82	-1.85	-2.64	
$\langle \Delta \sigma_2 angle^T$	0.06	0.00	-0.12	0.01		0.11	-0.04	0.22	-0.21	
$\langle \Delta \sigma_3 angle^T$	1.30	-0.01	1.66	-0.05		1.55	-0.27	1.57	-0.71	
$\langle \Delta \sigma_{11} \rangle^T$	-0.03	0.00	0.07	-0.01		0.12	-0.04	0.15	-0.17	
$\langle \Delta \sigma_{12} \rangle^T$	-0.01	0.00	0.00	0.00		0.01	0.00	0.02	-0.01	
$\langle \Delta \sigma_{13} \rangle^T$	0.02	0.00	0.03	0.00		0.03	0.01	0.03	0.02	
$\langle \Delta \sigma_{22} \rangle^T$	0.17	0.00	-0.74	0.02		-0.98	0.10	-1.33	0.28	
$\langle \Delta \sigma_{23} \rangle^T$	-0.24	0.00	-0.11	0.00		-0.07	0.19	-0.03	0.57	
$\langle \Delta \sigma_{33} \rangle^T$	0.60	0.00	0.44	-0.02		0.40	-0.12	0.41	-0.40	
$\langle \Delta \sigma_{44} angle^T$	-0.79	0.00	-0.49	0.02		-0.43	0.11	-0.35	0.28	
$\langle \Delta \sigma_{45} angle^T$	0.00	0.00	0.00	0.00		0.00	0.00	0.00	-0.01	
$\langle \Delta \sigma_{46} \rangle^T$	0.07	0.00	-0.01	0.00		-0.04	-0.01	-0.07	-0.03	
$\langle \Delta \sigma_{55} angle^T$	3.51	0.01	3.06	0.01		2.94	0.03	2.70	0.10	
$\langle \Delta \sigma_{56} \rangle^T$	0.04	0.00	0.03	0.00		0.02	0.00	0.02	0.01	
$\langle \Delta \sigma_{66} angle^T$	-2.43	0.00	-3.36	-0.05		-3.76	-0.27	-4.27	-0.99	
Sum	-0.01	-0.02	-1.17	-0.19		-1.94	-1.15	-2.81	-3.93	

Table S12: Computational rovibrational contributions to the ¹³C nuclear shielding anisotropy, $\langle \Delta \sigma_i \rangle^T$, at T = 300 K for CH₃X ($X = {}^{19}$ F, 35 Cl, 79 Br, 127 I).^{*a*}

^{*a*} In ppm. See Eq. (S1).

Table S13: Computational rovibrational contributions to the ¹H nuclear shielding constant, $\langle \sigma_i \rangle^T$, at T = 300 K for CH₃X ($X = {}^{19}$ F, 35 Cl, 79 Br, 127 I).^{*a*}

	CH ₃ F		СН	CH ₃ Cl		₃ Br	Cł	H ₃ I
	NR	BPPT	NR	BPPT	NR	BPPT	NR	BPPT
$\langle \sigma_1 \rangle^T$	-0.55	0.00	-0.58	0.01	-0.66	0.02	-0.68	0.05
$\langle \sigma_2 \rangle^T$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\langle \sigma_3 \rangle^T$	-0.01	0.00	-0.01	0.00	-0.01	0.00	-0.02	0.00
$\langle \sigma_{11} \rangle^T$	0.01	0.00	0.02	0.00	0.02	0.01	0.03	0.02
$\langle \sigma_{12} \rangle^T$	0.00	0.00	0.00	0.00	-0.01	0.00	-0.01	0.00
$\langle \sigma_{13} \rangle^T$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\langle \sigma_{22} \rangle^T$	0.01	0.00	0.02	0.00	0.03	-0.01	0.04	-0.03
$\langle \sigma_{23} \rangle^T$	-0.02	0.00	-0.02	0.00	-0.03	0.00	-0.03	0.00
$\langle \sigma_{33} \rangle^T$	0.03	0.00	0.04	0.00	0.05	0.00	0.06	-0.03
$\langle \sigma_{4a4a} \rangle^T$	0.09	0.01	0.11	0.00	0.12	0.01	0.13	0.00
$\langle \sigma_{4a5a} \rangle^T$	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00
$\langle \sigma_{4a6a} \rangle^T$	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00
$\langle \sigma_{5a5a} angle^T$	-0.13	0.00	-0.11	0.00	-0.11	0.00	-0.10	0.01
$\langle \sigma_{5a6a} \rangle^T$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\langle \sigma_{6a6a} angle^T$	-0.11	0.00	-0.13	0.00	-0.16	0.01	-0.18	0.05
$\langle \sigma_{\!4b4b} angle^T$	0.00	0.00	0.01	0.00	0.01	0.00	0.01	-0.01
$\langle \sigma_{\!4b5b} angle^T$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\langle \sigma_{\!4b6b} angle^T$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\langle \sigma_{5b5b} \rangle^T$	-0.05	0.00	-0.05	0.00	-0.05	0.00	-0.05	0.01
$\langle \sigma_{5b6b} \rangle^T$	0.02	0.00	0.02	0.00	0.02	0.00	0.02	-0.01
$\langle \sigma_{6b6b} angle^T$	0.06	0.00	0.10	0.00	0.13	0.00	0.16	-0.03
Sum	-0.63	0.01	-0.58	0.01	-0.62	0.04	-0.59	0.04

^{*a*} In ppm. See Eq. (S2).

	CH ₃ F		CH	CH ₃ Cl		CH ₃ Br			CH ₃ I	
	NR	BPPT	NR	BPPT	_	NR	BPPT		NR	BPPT
$\langle \Delta \sigma_1 \rangle^T$	-0.29	0.00	-0.19	0.00		-0.24	-0.01		-0.22	-0.03
$\langle \Delta \sigma_2 angle^T$	0.01	0.00	0.00	0.00		0.00	0.00		0.00	0.00
$\langle \Delta \sigma_3 angle^T$	-0.02	0.00	-0.04	0.00		-0.04	-0.01		-0.06	-0.01
$\langle \Delta \sigma_{11} angle^T$	0.08	0.00	0.05	0.00		0.07	-0.01		0.07	-0.02
$\langle \Delta \sigma_{12} \rangle^T$	0.01	0.00	0.00	0.00		0.01	0.00		0.01	0.00
$\langle \Delta \sigma_{13} \rangle^T$	-0.01	0.00	0.00	0.00		-0.01	0.00		-0.01	0.00
$\langle \Delta \sigma_{22} angle^T$	0.03	0.00	0.02	0.00		0.04	0.01		-0.02	0.05
$\langle \Delta \sigma_{23} \rangle^T$	0.03	0.00	0.04	0.00		0.03	0.00		0.07	-0.01
$\langle \Delta \sigma_{33} angle^T$	-0.05	0.00	-0.07	0.00		-0.05	0.01		-0.12	0.05
$\langle \Delta \sigma_{4a4a} angle^T$	0.04	0.00	0.01	0.00		0.00	0.00		-0.02	0.02
$\langle \Delta \sigma_{4a5a} \rangle^T$	-0.01	0.00	-0.01	0.00		-0.01	0.00		-0.01	0.00
$\langle \Delta \sigma_{4a6a} \rangle^T$	-0.01	0.00	-0.01	0.00		-0.02	0.00		-0.02	0.00
$\langle \Delta \sigma_{5a5a} \rangle^T$	0.03	0.00	0.01	0.00		-0.01	0.00		0.00	-0.02
$\langle \Delta \sigma_{5a6a} \rangle^T$	0.02	0.00	0.01	0.00		0.01	0.00		0.01	0.00
$\langle \Delta \sigma_{6a6a} angle^T$	0.11	0.00	0.23	0.00		0.30	-0.02		0.33	-0.07
$\langle \Delta \sigma_{\!4b4b} angle^T$	0.00	0.00	0.00	0.00		0.00	0.00		-0.01	0.01
$\langle \Delta \sigma_{4b5b} angle^T$	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00
$\langle \Delta \sigma_{4b6b} \rangle^T$	0.00	0.00	0.00	0.00		-0.01	0.00		-0.01	0.00
$\langle \Delta \sigma_{5b5b} \rangle^T$	0.05	0.00	0.06	0.00		0.05	0.00		0.07	-0.01
$\langle \Delta \sigma_{5b6b} \rangle^T$	-0.03	0.00	-0.03	0.00		-0.03	0.00		-0.03	0.01
$\langle \Delta \sigma_{6b6b} \rangle^T$	-0.04	0.00	-0.12	0.00		-0.13	0.01		-0.20	0.05
Sum	-0.05	0.00	-0.06	0.00		-0.03	-0.01		-0.16	0.02

Table S14: Computational rovibrational contributions to the ¹H nuclear shielding anisotropy, $\langle \Delta \sigma_i \rangle^T$, at T = 300 K for CH₃X ($X = {}^{19}$ F, 35 Cl, 79 Br, 127 I).^{*a*}

^{*a*} In ppm. See Eq. (S2).

References

- [1] J. Vaara and Y. Hiltunen, J. Chem. Phys., 1997, 107, 1744.
- [2] J. Vaara, K. Ruud, O. Vahtras, H. Ågren and J. Jokisaari, J. Chem. Phys., 1998, 109, 1212.
- [3] A. D. Buckingham and R. M. Olegário, Mol. Phys., 1997, 92, 773.