Supporting Information for:

Ferrocene- like iron bis(dicarbollide), [3-Fe^{III}-(1,2-C₂B₉H₁₁)₂]⁻. The first experimental and theoretical refinement of a paramagnetic ¹¹B NMR spectrum

Teemu O. Pennanen, Jan Macháček, Stefan Taubert, Juha Vaara,* and Drahomír Hnyk*

Table S1: Contraction schemes for the used basis sets, in the [primitive|contracted] notation.

def-TZVP:	HII:	HIII+d1:
C: [11s6p1d 5s3p1d]	C: [9s5p1d 5s4p1d]	C: [12s8p2d 8s7p2d]
B: [11s6p1d 5s3p1d]	B: [9s5p1d 5s4p1d]	B: [11s7p2d 7s6p2d]
H: [5s1p 3s1p]	H: [5s1p 3s1p]	H: [7s2p 5s2p]
Stuttgart ECP valence basis:	Munzarová-Kaupp NMR:	

Stuttgart ECP valence basis: Fe: [8s7p6d|6s5p3d] Munzarová-Kaupp NMR Fe: [16s12p7d|10s8p5d]

Table S2: Geometry of compound 1, optimised at BP86/TZVP(ECP) level, in Ångstroms.

 45

Fe	0.00000	0.00000	0.00063
В	1.56857	1.57264	0.00575
В	1.52807	0.50535	1.43153
В	1.52680	0.51513	-1.42736
С	1.54459	-1.08479	0.81149
С	1.54396	-1.07912	-0.81803
В	3.00906	-1.51839	-0.00558
В	3.01800	-0.47853	-1.43303
В	3.01894	-0.48817	1.42896
В	3.06952	1.21475	-0.89101
В	3.07031	1.20879	0.89779
В	3.97974	-0.04475	-0.00110
Н	1.11113	2.68466	0.00976
Н	1.05309	0.72377	2.50688
Н	1.05076	0.74052	-2.50086
Н	1.10766	-1.94276	1.31917
Н	1.10678	-1.93361	-1.33131
Н	3.32796	-2.66671	-0.00965
Н	3.42774	-0.93461	-2.45796
Н	3.42997	-0.95093	2.45042
Н	3.63181	2.04452	-1.54655
Н	3.63354	2.03403	1.55831
Н	5.17355	-0.12572	-0.00174
В	-1.56857	-1.57264	0.00588
В	-1.52809	-0.50524	1.43158
В	-1.52677	-0.51523	-1.42730
С	-1.54461	1.08484	0.81143
С	-1.54395	1.07907	-0.81809
В	-3.00906	1.51839	-0.00570
В	-3.01798	0.47842	-1.43308
В	-3.01897	0.48827	1.42891
В	-3.06950	-1.21481	-0.89093
В	-3.07033	-1.20873	0.89787
В	-3.97974	0.04475	-0.00113
Н	-1.11113	-2.68466	0.00999
Н	-1.05313	-0.72356	2.50695
Η	-1.05071	-0.74071	-2.50078
Η	-1.10768	1.94284	1.31906
Н	-1.10677	1.93353	-1.33143
Н	-3.32797	2.66670	-0.00987
Н	-3.42770	0.93441	-2.45806
Н	-3.43002	0.95112	2.45033
Н	-3.63177	-2.04464	-1.54642
Η	-3.63357	-2.03392	1.55844
Н	-5.17355	0.12571	-0.00181

Experimental peak frequencies, widths and integrals obtained from Varian VNMR software, after applying Lorentzian deconvolution.

Table S3: Estimated linewidths in Hz based on Solomon-Bloembergen equations, similar approximations and equations used as in (Rastrelli & Bagno, *Chem. Eur. J.* 2009, 15, 7990), ordered from closest to metal centre outward. All values at 293.15 K.

	Con	tact	Dipolar	То	tal	Total	Total
Boron #	PBE	PBE0	-	PBE	PBE0	Exp.ª	Exp. [♭]
8,8′	1960	4435	10	1970	4445	1396.82	693.92
4,7,4',7'	2647	5130	12	2658	5142	1256.35	829.90
6,6′	7	40	1	8	41	214.36	195.04
5,11,5',11'	0	3	1	1	3	161.41	195.39
9,12,9',12'	2	0	1	2	1	141.31	187.25
10,10'	57	67	0	57	67	344.67	254.22
T							

^a In acetone. ^b In acetonitrile.

Table S4: Experimental linewidths in acetone, ordered by increasing frequency.

t/°C	1	2	3	4	5	6
-40	675.80	327.69	432.31	395.35	1583.55	1382.75
-30	562.20	253.91	333.98	335.70	1491.59	1238.02
-20	604.12	255.33	323.23	318.60	1825.40	1887.10
-10	376.23	174.14	219.61	254.97	1185.33	1032.43
0	450.37	176.65	215.06	253.13	1500.45	1673.13
10	279.41	140.27	165.27	215.76	982.71	909.43
20	344.67	141.31	161.41	214.36	1256.35	1396.82
30	220.04	116.81	129.29	189.29	838.74	767.81
40	272.22	118.18	127.40	188.52	1049.54	1118.48

Table S5: Peak integrals from experimental spectra measured at 20°C.

ł	Assigned Boron #	Frequency/Hz ^a	Frequency/Hz ^b	Integral ^a	Integral ^b
	- 8,8'	-63042.900	-61624.000	16291.53	12607.15
	4,7,4′,7′	-54883.700	-53546.700	30258.44	30592.22
	6,6'	-4344.770	-4235.680	15533.73	19339.95
	5,11,5′,11′	-36.844	-68.930	29488.26	37045.35
	9,12,9′,12′	2441.100	2303.160	28681.73	35950.71
	10,10'	13784.000	13326.800	15015.14	16792.32
h					

^a In acetone. ^b In acetonitrile.

Figure S1: Experimental spectrum of compound 1 in acetone at 40°C, showing peak integrals and their values.

Figure S2: Experimental spectra of compound **1** in acetone, measured at temperatures of -40°C (bottom) to 40°C (top) at 10°C intervals.