The chemical roots of the matching polynomial

Remi Chauvin, ${ }^{[a, b], *}$ Christine Lepetit, ${ }^{[a, b]}$ Patrick W. Fowler, ${ }^{\dagger}$ Jean-Paul Malrieu. ${ }^{\ddagger}$

${ }^{[a]}$ CNRS ; LCC (Laboratoire de Chimie de Coordination) ; 205, route de Narbonne, F-31077 Toulouse, France. Fax: (+33)5 615530 03. E-mail: chauvin@1cc-toulouse.fr. ${ }^{[b]}$ Université de Toulouse ; UPS, INPT ; LCC ; F-31077 Toulouse, France. ${ }^{\dagger}$ Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K., and ${ }^{\ddagger}$ Laboratoire de Chimie et Physique Quantiques IRSAMC, UMR 5626 CNRS, 118 route de Narbonne, 31062, Toulouse cedex 09, France.

Supplementary Information

List of content :

Page 2: Table S1
Page 4 : Table S2

| | $x^{7}-7 x^{5}+13 x^{3}-7 x$ $x^{7}-7 x^{5}+13 x^{3}-3 x$ | 0.155 |
| :--- | :--- | :--- | :--- | :--- |

Table S1. Characteristic and acyclic polynomials of some Hückel and Möbius unicycles with ring size 3-6. The o-benzoquinone, ${ }^{1}$, 1,4 -dihydropyrazine, ${ }^{2} 1,3$-pyrimidine and imidazole graphs are here weighted by the Hess-Schaad parameters: $h_{\mathrm{O}} \bullet=0.22, k_{\mathrm{C}-\mathrm{O}}=0.99,{ }^{3} h_{\mathrm{N} \bullet}=0.38, \mathrm{k}_{\mathrm{C}-\mathrm{N} \bullet}=0.70,{ }^{4} h_{\mathrm{N}}$: $=1.50, k_{\mathrm{C}-\mathrm{N}:}=0.90 .{ }^{5} * \mathrm{TRE}$ values for the neutral ground state (in β units).
${ }^{1}$ J. Aihara, J. Am. Chem. Soc., 1976, 98, 2750-2758.
${ }^{2}$ J. Aihara, H. Ichikawa, Bull. Chem. Soc. Jpn., 1988, 61, 223-228.
${ }^{3}$ B. A. Hess, Jr, L. J. Schaad, C. W. Holyoke, Jr. Tetrahedron, 1972, 28, 5299.
${ }^{4}$ B. A. Hess, Jr, L. J. Schaad, C. W. Holyoke, Jr. Tetrahedron, 1975, 31, 295.
${ }^{5}$ B. A. Hess, Jr, L. J. Schaad, C. W. Holyoke, Jr. Tetrahedron, 1972, 28, 3657.

	Hückel and Möbius characteristic polynomials	Acyclic polynomial
	$\begin{aligned} & P^{0}(\mathrm{x})=\mathrm{x}^{7}-8 \mathrm{x}^{5}-2 \mathrm{x}^{4}+17 \mathrm{x}^{3}+6 \mathrm{x}^{2}-10 \mathrm{x}-4 \\ & P^{1}(\mathrm{x})=\mathrm{x}^{7}-8 \mathrm{x}^{5}-2 \mathrm{x}^{4}+17 \mathrm{x}^{3}+6 \mathrm{x}^{2}-6 \mathrm{x} \\ & P^{2}(\mathrm{x})=\mathrm{x}^{7}-8 \mathrm{x}^{5}+2 \mathrm{x}^{4}+17 \mathrm{x}^{3}-6 \mathrm{x}^{2}-10 \mathrm{x}+4 \\ & P^{3}(\mathrm{x})=\mathrm{x}^{7}-8 \mathrm{x}^{5}+2 \mathrm{x}^{4}+17 \mathrm{x}^{3}-6 \mathrm{x}^{2}-6 \mathrm{x} \end{aligned}$	$P^{\text {ac }}(\mathrm{x})=\mathrm{x}^{7}-8 \mathrm{x}^{5}+17 \mathrm{x}^{3}-8 \mathrm{x}$
	$\begin{aligned} & P^{0}(\mathrm{x})=\mathrm{x}^{8}-9 \mathrm{x}^{6}+22 \mathrm{x}^{4}-16 \mathrm{x}^{2}+1 \\ & P^{1}(\mathrm{x})=\mathrm{x}^{8}-9 \mathrm{x}^{6}+22 \mathrm{x}^{4}-12 \mathrm{x}^{2}+1 \\ & P^{2}(\mathrm{x})=\mathrm{x}^{8}-9 \mathrm{x}^{6}+26 \mathrm{x}^{4}-28 \mathrm{x}^{2}+9 \\ & P^{3}(\mathrm{x})=\mathrm{x}^{8}-9 \mathrm{x}^{6}+26 \mathrm{x}^{4}-24 \mathrm{x}^{2}+1 \end{aligned}$	$P^{\text {ac }}(\mathrm{x})=\mathrm{x}^{8}-9 \mathrm{x}^{6}+24 \mathrm{x}^{4}-20 \mathrm{x}^{2}+3$
	$\begin{aligned} & P^{0}(\mathrm{x})=\mathrm{x}^{9}-10 \mathrm{x}^{7}+32 \mathrm{x}^{5}-2 \mathrm{x}^{4}-39 \mathrm{x}^{3}+6 \mathrm{x}^{2}+15 \mathrm{x}-4 \\ & P^{1}(\mathrm{x})=\mathrm{x}^{9}-10 \mathrm{x}^{7}+32 \mathrm{x}^{5}-2 \mathrm{x}^{4}-35 \mathrm{x}^{3}+6 \mathrm{x}^{2}+7 \mathrm{x} \\ & P^{2}(\mathrm{x})=\mathrm{x}^{9}-10 \mathrm{x}^{7}+32 \mathrm{x}^{5}+2 \mathrm{x}^{4}-39 \mathrm{x}^{3}-6 \mathrm{x}^{2}+15 \mathrm{x}+4 \\ & P^{3}(\mathrm{x})=\mathrm{x}^{9}-10 \mathrm{x}^{7}+32 \mathrm{x}^{5}+2 \mathrm{x}^{4}-35 \mathrm{x}^{3}-6 \mathrm{x}^{2}+7 \mathrm{x} \end{aligned}$	$P^{\text {ac }}(\mathrm{x})=\mathrm{x}^{9}-10 \mathrm{x}^{7}+32 \mathrm{x}^{5}-37 \mathrm{x}^{3}+11 \mathrm{x}$
 7	$\begin{aligned} & P^{0}(\mathrm{x})=\mathrm{x}^{10}-11 \mathrm{x}^{8}+41 \mathrm{x}^{6}-65 \mathrm{x}^{4}+43 \mathrm{x}^{2}-9 \\ & P^{1}(\mathrm{x})=\mathrm{x}^{10}-11 \mathrm{x}^{8}+41 \mathrm{x}^{6}-61 \mathrm{x}^{4}+31 \mathrm{x}^{2}-1 \\ & P^{2}(\mathrm{x})=\mathrm{x}^{10}-11 \mathrm{x}^{8}+41 \mathrm{x}^{6}-61 \mathrm{x}^{4}+31 \mathrm{x}^{2}-1 \\ & P^{3}(\mathrm{x})=\mathrm{x}^{10}-11 \mathrm{x}^{8}+41 \mathrm{x}^{6}-57 \mathrm{x}^{4}+19 \mathrm{x}^{2}-1 \end{aligned}$	$\begin{aligned} & P^{\mathrm{ac}}(\mathrm{x})=\mathrm{x}^{10}-11 \mathrm{x}^{8}+41 \mathrm{x}^{6}- \\ & 61 \mathrm{x}^{4}+31 \mathrm{x}^{2}-3 \end{aligned}$
	$\begin{aligned} & P^{0}(\mathrm{x})=\mathrm{x}^{12}{ }_{-14 \mathrm{x}^{10}+69 \mathrm{x}^{8}-154 \mathrm{x}^{6}+162 \mathrm{x}^{4}-72 \mathrm{x}^{2}+9} \\ & P^{1}(\mathrm{x})=\mathrm{x}^{12}{ }_{-14 \mathrm{x}^{10}+69 \mathrm{x}^{8}-150 \mathrm{x}^{6}+142 \mathrm{x}^{4}-48 \mathrm{x}^{2}+1} \\ & P^{2}(\mathrm{x})=\mathrm{x}^{12}-14 \mathrm{x}^{10}+69 \mathrm{x}^{8}-150 \mathrm{x}^{6}+142 \mathrm{x}^{4}-48 \mathrm{x}^{2}+1 \end{aligned}$	$\begin{aligned} & P^{\mathrm{ac}}{ }_{(\mathrm{x})=\mathrm{x}}{ }^{12}-14 \mathrm{x}^{10}+71 \mathrm{x}^{8} \\ & 162 \mathrm{x}^{6}+164 \mathrm{x}^{4}-60 \mathrm{x}^{2}+5 \end{aligned}$

	$\left\lvert\, \begin{aligned} & P^{3}(\mathrm{x})=\mathrm{x}^{12}-14 \mathrm{x}^{10}+73 \mathrm{x}^{8}-178 \mathrm{x}^{6}+214 \mathrm{x}^{4}- \\ & 120 \mathrm{x}^{2}+25 \\ & P^{4}(\mathrm{x})=\mathrm{x}^{12}-14 \mathrm{x}^{10}+73 \mathrm{x}^{8}-174 \mathrm{x}^{6}+186 \mathrm{x}^{4}-72 \mathrm{x}^{2}+1 \\ & P^{5}(\mathrm{x})=\mathrm{x}^{12}{ }_{-14 \mathrm{x}^{10}+73 \mathrm{x}^{8}-174 \mathrm{x}^{6}+186 \mathrm{x}^{4}-72 \mathrm{x}^{2}+1} \\ & P^{6}(\mathrm{x})=\mathrm{x}^{12}-14 \quad \mathrm{x}^{10}+69 \mathrm{x}^{8} \quad-146 \mathrm{x}^{6}+122 \mathrm{x}^{4}- \\ & 24 \mathrm{x}^{2}+1 \\ & P^{7}(\mathrm{x})=\mathrm{x}^{12}-14 \mathrm{x}^{10}+73 \mathrm{x}^{8}-170 \mathrm{x}^{6}+158 \mathrm{x}^{4}-24 \mathrm{x}^{2}+1 \end{aligned}\right.$	
	$\begin{aligned} & P^{0}(\mathrm{x})=\mathrm{x}{ }^{9}-1.5 \mathrm{x}^{8}-9.62 \mathrm{x}^{7}+12 \mathrm{x}^{6}+29.34 \mathrm{x}^{5}- \\ & 28.619 \mathrm{x}^{4}-34.059 \mathrm{x}^{3}+24.360 \mathrm{x}^{2}+12.339 \mathrm{x}-4.74 \\ & P^{1}(\mathrm{x})=\mathrm{x}^{9}-1.5 \mathrm{x}^{8}-9.62 \mathrm{x}^{7}+12 \mathrm{x}^{6}+29.34 \mathrm{x}^{5}- \\ & 28.618 \mathrm{x}^{4}-30.059 \mathrm{x}^{3}+18.359 \mathrm{x}^{2}+5.859 \mathrm{x}-1.5 \\ & P^{2}(\mathrm{x})=\mathrm{x}^{9}-1.5 \mathrm{x}^{8}-9.62 \mathrm{x}^{7}+12 \mathrm{x}^{6}+29.341 \mathrm{x}^{5}- \\ & 25.379 \mathrm{x}^{4}-34.061 \mathrm{x}^{3}+14.639 \mathrm{x}^{2}+12.34 \mathrm{x}+1.74 \\ & P^{3}(\mathrm{x})=\mathrm{x}^{9}{ }^{4} 1.50 \mathrm{x}^{8}-9.62 \mathrm{x}^{6}+12 \mathrm{x}^{6}+29.338 \mathrm{x}^{5}- \\ & 25.381 \mathrm{x}^{4}-30.057 \mathrm{x}^{3}+8.640 \mathrm{x}^{2}+5.859 \mathrm{x}-1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & P^{\mathrm{ac}}(\mathrm{x})=\mathrm{x}^{9}-1.5 \mathrm{x}^{8}- \\ & 9.62 \mathrm{x}^{7}+12 \mathrm{x}^{6}+29.34 \mathrm{x}^{5}-27 \mathrm{x}^{4}- \\ & 32.06 \mathrm{x}^{3}+16.5 \mathrm{x}^{2}+9.10 \mathrm{x}-1.5 \end{aligned}$

Table S2. Characteristic and acyclic polynomials of some Hückel and Möbius polycyclic systems.
Each Möbius circuit is marked by a tilde: the edge where it is located is weighted by a factor -1 , while all other edges are non-weighted. The isoindole graph is weighted by the Hess-Schaad Hückel parameters: $h_{\mathrm{N}:}=1.50, k_{\mathrm{C}-\mathrm{N}:}=0.90 .{ }^{4}$

