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SUPPLEMENTARY MATERIAL:  
 
I. Fitting of the Hessian matrix 
 

In the fitting of the Hessian matrix elements as functions of the reaction 

coordinate, one can take advantage of symmetry. The non-diagonal elements may be 

written in the form of numerical derivatives as 
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Here, α  and β  label any of the 15 atomic coordinates in {Cx, Cy, …, H4z}, E(Δα,Δβ)  

denotes the DFT energy of CH4 interacting with Ni(111) with a small displacement along 

α and β,  and δ  the small displacement used in the second order differencing. For 

example, the H(Cx,Cy) (or H(Cy,Cx)) is 0, since ),( yx CCE ΔΔ = ),( yx CCE Δ−Δ  and 

),( yx CCE ΔΔ− = ),( yx CCE Δ−Δ− . 

 

From Eq.S1, one can deduce the symmetry properties of H of methane interacting 

with Ni(111) in a geometry belonging to the Cs symmetry (Fig. 1 in the paper): (1) there 

are always 18 zero elements in the lower triangle of the Hessian matrix (see Fig. S1), (2) 

the main block matrices A, B and F  (see Fig. S1)  can be split up in six 3×3 sub-blocks, 

namely A1, A2 , B1, B2, F1 and F2, in which the absolute values of all the corresponding 

elements in the sub-blocks corresponding to each other are numerically identical to each 

other except for the sign of their off-diagonal elements, (3) the triangular matrices E1 and 

E2 are also numerically the same except for the sign of their off-diagonal terms, (4) the 
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block D is a unique block and its off-diagonal terms differ only from each other in their 

sign. The symmetry properties (2) and (3) may also be described as follows: let X be A, 

or B, or C, or E, or F. We then have for (i, j = 1, 2, 3): 
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The symmetry property (4) can be described by 

jiij DD −= .           (S4) 

 

 

 

Figure S1: The schematic Hessian matrix for methane interacting with Ni(111) in a 

geometry with CS symmetry. The 18 zeros are displayed in the lower triangle in addition 

with the sub-block matrices of A, D, B and F and the two triangular blocks of E1 and E2. 

The sub blocks of these main blocks are separated by a line. 
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 As stated before, the numerical noise in the forces obtained from the plane wave 

code may alter the symmetry properties of H. To obtain a correct CS symmetrized H, we 

first fitted the components of the force (gradient components) to functions of 

ρ, employing  13 model functions listed in Table S1. In each case, we simply selected the 

function providing the best fit by calculating the average absolute deviation. In the 

second step, we obtained noise reduced Hessian matrix elements using a second order 

numerical differencing of the force components. The obtained H was then symmetrized 

using 
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The additional symmetry conditions discussed above were imposed by inserting zeros in 

the places illustrated in Fig. S1. We also applied ‘numerical padding’ to the sub-blocks. 

This was achieved by: (1) averaging the sub-blocks in A, B, E and F matrices by,  
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followed by the mapping the signs of 1
ijX  onto 

∧
1

ijX and then applying Eq. S3 to the off-

diagonal elements of 
∧

2
ijX , (2) symmetrizing the D block  using,  
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and applying, 
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Table S1: The table shows the 13 model functions used in the fitting of the force-
components. The ai are the coefficients of the model functions. x denotes the reaction 
coordinate.  
 
 

1. a1+a2x 
2. a1+a2x+a3x2 
3. a1+ a2x2 
4. a1+ a2x3 
5. a1+a2x+a3x2+ a4x3+a5x4 
6. a1+a2x+a3x2+ a4x3+a5x4+a6x5 
7. a1+a2/x 
8. a1/x 
9. a1+a2/x+a3/x2 
10. a1+a2/x+a3/x2+a4/x3 
11. a1x+a2/x2+a3/x3 
12. a1(sin(x)cos(x)/x)+a2sin(x)+a3cos(x)+a4x
13. a1sin(x)+a2cos(x) 
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II. Approximation of the vibrational wavefunction by normal modes 
 

In this section we justify the use of normal modes instead of the vibrational wave 

function for the Massey velocity calculations by stating the close correspondence of the 

inner product in the quantum function and classical normal eigenvector spaces. This 

close correspondence is based on the quantum eigenfunction  being a ‘ -deformation’ of 

the classical normal mode solution. 

 
The classical and quantum mechanical solutions of a harmonic oscillator resemble 

each other in several ways. Although for the system considered (CH4 interacting with a 

rigid Ni(111) surface) the classical solution  − the normal modes − lies on a limited 15-

dimensional Hilbert space (since it is defined in an Rn space with n=15), it shows many 

one-to-one correspondences with its quantum counterpart (the vibrational eigenfunction) 

such as unique vibrational eigenvalues and having similar spatial-properties such as 

orthogonality, completeness, norm, Schwarz inequality (or in general, the Gram 

determinants1) etc. Furthermore, the inner product in both the quantum function and 

classical normal mode eigenvector spaces are defined in the space of L2 (i.e. Lebesgue 

space with 2-norm), which is a square-integrable (or square-summable) linear space2. In 

quantum eigenfunction space the projection of a vibrational eigenfunction at ρi on 

another eigenfunction at ρj is evaluated as the overlap integral, whereas it corresponds to 

the dot product of the corresponding normal mode coefficients in the classical case .   

 

In addition to this, a proof exists of the correspondence between the classical 

eigenvector and vibrational quantum eigenfunction3.  This is based on the ‘ -
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deformation’ of the classical eigenvector. The proof of this deformation does not depend 

on the number of particles or the potential and assumes that the quantum eigenfunctions 

are square integrable over Rn. 

 

Following the above arguments, one can write the relation between the vibrational 

eigenfunction, Ψ ,  of a harmonic oscillator and the corresponding normal mode 

eigenvector, F, as 

 

FΨ =
→0

lim ,                                                   (S9) 

 

where iii
xfF Σ= ,  fi are the components of F with respect to the Cartesian atomic 

coordinates xi. 

Similarly another vibrational quantum eigenfunction, Φ corresponding to a 

different normal mode eigenvector, G  can be written as, 

 

GΦ =
→0

lim ,                                                          (S10) 

 

where iii
xgG Σ=  and gi  are the vector components of the normal mode G. 

 

Then the correspondence between the overlap integral of Ψ  and Φ  and the dot 

product of the F and G is related by,  
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