Electronic Supplementary Information

Shell and Ligand-Dependent Blinking of CdSe-Based Core/Shell

Nanocrystals

Bonghwan Chon,^{*a*} Sung Jun Lim,^{*a*} Wonjung Kim,^{*a*} Jongcheol Seo,^{*a*} Hyeonggon Kang,^{*b*} Taiha Joo,^{*a*} Jeeseong Hwang^{*b*} and Seung Koo Shin*^{*a*}

^a Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology, San31 Hyoja-dong Nam-gu, Pohang, Kyungbuk 790-784, Korea. Fax: +82 54 279 3399; Tel: +82 54 279 2123; E-mail: skshin@postech.ac.kr

^b National Institute of Standards and Technology, Physics Laboratory, Optical Technology Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA Fax: +1 301 975 4580; Tel:+1 307 975 6991

^{*}To whom all correspondence should be addressed.

Figure Caption

Figure S1. Powder X-ray diffraction of CdSe/ZnS(6ML), CdSe/ZnSe(2ML)/ZnS(4ML) and CdSe/CdS(2ML)/ZnS(4ML) nanocrystals. The shell thickness is denoted in parenthesis in units of monolayer (ML). Vertical lines represent the diffraction patterns for bulk ZB compounds.

Figure S2. (a) The on-time duration following the *N*th off-period for CdSe/ZnS(6ML), CdSe/ZnSe(2ML)/ZnS(4ML) and CdSe/CdS(2ML)/ZnS(4ML) organic-soluble nanocrystals; (b) the off-time duration following the *N*th on-period.

Figure S3. (a) Blinking time trace (0–6 min, 4 ms bin) and intensity histogram of a watersoluble CdSe/ZnSe/ZnS nanocrystal. The on/off threshold was varied from two to seven times the standard deviation (σ) of average dark count. (b) On- and (c) off-time probability distributions in log-log scale at various thresholds. Each probability distribution was fit to the power law to extract α_{on} and α_{off} . Threshold dependence of (d) on- and (e) off-time exponents: The power-law exponents obtained from threshold of 3–6 σ are comparable within errors. **Figure S4.** (a) Blinking time trace (0–6 min, 4 ms bin) and intensity histogram of an organicsoluble CdSe/CdS/ZnS nanocrystal with increasing integration bin time; 4 ms (green), 8 ms (blue), 16 ms (red) and 32 ms (black). (b) Blinking time trace expanded between 165 and 177 s. The on/off threshold of 3σ is denoted by dotted line.

Figure S5. On- and off-probability distributions of an organic-soluble CdSe/CdS/ZnS nanocrystal with increasing integration bin time; 4 ms (green), 8 ms (blue), 16 ms (red) and 32 ms (black). (a) On-time and (b) off-time on log–log scales; (c) on-time and (d) off-time in log–linear scales. The power-law exponents are assigned to the data in log–log plots. Each line shown in semi-log plots represents the three-component exponential fit to the data. A single exponential does not fit the data.

List of Table

Table S1. Mean and error (95% confidence limit) of the power exponents (α_{on} , α_{off}) for organic and water-soluble nanocrystals, *N* is the number of nanocrystals.

Table S2. Previously reported power-law exponents of CdSe-based nanocrystals under various substrates and surface passivation conditions.

Figure S1

Figure S2b

Figure S3

Figure S4

Figure S5

core/shell nanocrystals –		organic-solu	ıble ^a	water-soluble ^b		
	Ν	$lpha_{ m on}$ $\pm \sigma$	$lpha_{ m off}$ $\pm \sigma$	Ν	$\alpha_{ m on}$ $\pm \sigma$	$lpha_{ m off}$ $\pm \sigma$
CdSe/ZnS(6ML)	12	1.86 ± 0.13	1.38 ± 0.10	12	2.17 ± 0.11	1.33 ± 0.08
CdSe/ZnSe(2ML)/ZnS(4ML)	15	1.75 ± 0.12	1.36 ± 0.07	7	2.11 ± 0.13	1.25 ± 0.06
CdSe/CdS(2ML)/ZnS(4ML)	33	1.53 ± 0.08	1.55 ± 0.03	15	1.85 ± 0.14	1.37 ± 0.06

Table S1. Mean and error (95% confidence limit) of the power exponents (α_{on} , α_{off}) for organic and water-soluble nanocrystals, *N* is the number of nanocrystals

^a Stearate-covered nanocrystals in chloroform.

^b MPA (3-mercaptopropionic acid)-capped nanocrystals in water.

Table S2. Previously reported power-law exponents of CdSe-based nanocrystals under various substrates and surface passivation conditions

nanocrystal	orga	nic-soluble	wa	ter-soluble	au h atuata	ref.
	$lpha_{ m on}$	$lpha_{ m off}$	$lpha_{ m on}$	$lpha_{ m off}$	substrate	
CdSe	1.70	1.29			glass slide	1
	1.54 ^a	1.35 ^a			glass slide	1
CdSe/CdS	1.42	1.54			polymer film	1
CdSe/ZnS		1.37–1.79			glass slide	2
	1.73	1.38	2.29 ^b	1.39 ^b	glass slide	3
			2.27 ^c	1.64 ^c	glass slide	3
			1.48 ^d	1.64 ^d	glass slide	3
			1.71 ^e	1.64 ^e	glass slide	4
			2.04 ^e	1.57 ^e	gel	4
		1.46–1.77			polymer film	5
	1.71	1.63	2.16 ^f	1.72 ^f	polymer film	6
			2.25 ^g	1.66 ^g	polymer film	6
	1.61	1.74			fused silica cover slip	7

^a octylamine-covered

^b carboxy-functionalized

^c amine-functionalized

^d mercaptoundecanoic acid-capped

^e strepavidin-conjugated

^f AET (aminoethanethiol)-capped

^g MPA (3-mercaptopropionic acid)-capped

REFERENCES

- 1. D. E. Gómez, J. van Embden, J. Jasieniak, T. A. Smith and P. Mulvaney, *Small*, 2006, **2**, 204–208.
- 2. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher and D. J. Nesbitt, *J. Chem. Phys.*, 2001, **115**, 1028–1040.
- 3. J. R. Krogmeier, H. Kang, M. L. Clarke, P. Yim and J. Hwang, *Opt. Commun.*, 2008, **281**, 1781–1788.
- 4. J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel and W. W. Webb, *Proc. Natl. Acad. Sci.USA*, 2005, **102**, 14284-14289.
- 5. A. Issac, C. von Borczyskowski and F. Cichos, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2005, **71**, 161302(R).
- Y. Kim, N. W. Song, H. Yu, D. W. Moon, S. J. Lim, W. Kim, H.-J. Yoon and S. K. Shin, *Phys. Chem. Chem. Phys.*, 2009, **11**, 3497–3502.
- 7. M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher and D. J. Nesbitt, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2003, **67**, 125304.