Supporting Information

The UV Absorption of Nucleobases: Semi-Classical *Ab Initio* Spectrum Simulations

Mario Barbatti, Adelia J. A. Aquino, and Hans Lischka

SUPI	PORTING INFORMATION 1
I.	FEATURES OF THE EXPERIMENTAL AND THEORETICAL SPECTRA 2
II.	VERTICAL EXCITATIONS
A.	ADENINE – CC2/TZVP
В.	Adenine – CC2/TZVP-Aug
C.	GUANINE – CC2/SVP
D.	GUANINE – CC2/TZVP
E.	GUANINE – CC2/TZVP-AUG
F.	CYTOSINE –CC2/TZVP
G.	CYTOSINE – CC2/TZVP-AUG
H.	THYMINE – CC2/TZVP
I.	THYMINE – CC2/TZVP-AUG7
J.	URACIL – CC2/TZVP
Κ.	URACIL – CC2/TZVP-AUG
III.	OPTIMIZED GEOMETRIES AT CC2/TZVP LEVEL
A.	Adenine
B.	GUANINE
C.	CYTOSINE
D.	Thymine
E.	URACIL
REF	ERENCES

				ΔΙ	E (eV)		
Base	Ref.	Phase	Sh1	Max1	Sh2	Sh3	Max2
Ade	Present work	V		5.26			6.38
	1	V		5.07			
	2	V		4.92			5.99
	3	W		4.78			
	4	W		4.78			
Gua	Present work (SVP)	V		(4.94,5.65)			7.27
	Present work (TZVP)	V		(4.81, 5.49)			
	2	V		(4.23, 4.37)			
	3	W		(4.50, 5.07)			
	4	W		(4.44, 4.92)			
Cyt	Present work	V		4.65		5.62	6.40
	2	V	4.28	~4.77			
	3	W		4.65			
	4	W		4.56	4.99	5.38	
	5	W		4.66	5.39	5.85	6.29
Thy	Present work	V		5.23			6.58
2	3	W		4.70			
	4	W		4.61			
Ura	Present work	V		5.36			6.96
	2	V		5.08	6.05		6.63
	3	W		4.79			

I. Features of the experimental and theoretical spectra

Sh – Shoulder; Max – maximum; V – vapor; W – in water.

II. Vertical excitations

State	Assignment	$\Delta E ({ m eV})$	f	Main contribution	%
S_1	$n \rightarrow \pi^*$	5.20	0.003	33a-36a	79.2
S_2	$\pi \rightarrow \pi^*$	5.29	0.070	35a-38a	44.5
				34a-36a	31.6
S_3	$\pi \rightarrow \pi^{*}$	5.42	0.301	35a-36a	83.1
\mathbf{S}_4	$n \rightarrow \pi^*$	5.86	0.004	33a-38a	87.4
S_5	$n \rightarrow \pi^*$	6.26	0.007	31a-38a	87.2
S_6	$\pi \rightarrow \pi^*$	6.55	0.455	34a-36a	44.6
				35a-38a	24.6
S_7	$\pi \rightarrow R_{3s}$	6.74	0.009	35a-37a	33.4
				35a-39a	31.3
S_8	$\pi \rightarrow \pi^*$	6.83	0.074	32a-36a	57.7
S_9	$\pi \rightarrow \pi^*$	6.92	0.044	35a-40a	46.0
				35a-41a	15.2
\mathbf{S}_{10}	$n \rightarrow \pi^*$	7.03	0.014	31a-38a	72.8

A. Adenine – CC2/TZVP

B. Adenine – CC2/TZVP-aug

State	Assignment	$\Delta E (eV)$	f	Main contribution	%
\mathbf{S}_1	$n \rightarrow \pi^*$	5.11	0.003	33a-52a	19.2
				33a-50a	16.8
S_2	$\pi \rightarrow \pi^{*}$	5.20	0.073	35a-58a	30.5
S_3	$\pi \rightarrow \pi^*$	5.25	0.212	35a-58a	19.6
				35a-50a	11.5
S_4	$\pi \rightarrow R_{3s}$	5.47	0.009	35a-36a	45.3
S_5	$n \rightarrow \pi^*$	5.75	0.005	33a-58a	58.9
S_6	$\pi \rightarrow R_{3s}$	5.80	0.005	35a-37a	41.9
				35a-36a	22.6
S_7	$n \rightarrow R_{3s}$	6.02	0.028	33a-36a	56.2
S_9	$n \rightarrow \pi^*$	6.19	0.016	31a-52a	18.5
				31a-50a	15.7
S_9	$\pi \rightarrow R_{3s}$	6.24	0.001	35a-38a	50.1
S_{10}	$n \rightarrow R_{3s}$	6.29	0.333	33a-37a	18.2
	$\pi \rightarrow \pi^{*}$			35a-58a	10.2

C. Guanine – CC2/SVP

State	Assignment	$\Delta E (\mathrm{eV})$	f	Main contribution	%
S_1	$\pi \rightarrow \pi^{*}$	5.26	0.210	39a-40a	79.8
S_2	$n \rightarrow \pi^*$	5.64	0.002	35a-41a	32.3
				37a-41a	30.4
S_3	$\pi \rightarrow \pi^*$	5.89	0.263	39a-41a	75.0
S_4	$n \rightarrow \pi^*$	6.26	0.000	37a-40a	68.8
S_5	$n \rightarrow \pi^*$	6.48	0.000	35a-40a	72.5

S_6	$n \rightarrow \pi^*$	6.72	0.004	35a-41a	37.5
				37a-41a	36.0
S_7	$\pi \rightarrow \pi^*/R_{3s}$	6.84	0.006	39a-42a	55.1
S_8	$\pi \rightarrow \pi^*$	6.97	0.019	39a-45a	43.2
	$\pi \rightarrow \pi^* / R_{3s}$			39a-44a	20.5
S_9	$\pi \rightarrow R_{3s}$	7.34	0.002	39a-43a	95.5
S_{10}	$n \rightarrow \pi^*$	7.42	0.119	33a-40a	32.2
				37a-45a	12.5
S_{11}	$\pi \rightarrow \pi^*$	7.45	0.083	38a-41a	43.2
				36a-40a	29.3
S_{12}	$\pi \rightarrow \pi^*$	7.50	0.377	38a-41a	22.0
				36a-41a	18.3
				36a-40a	15.9
S_{13}	$\pi \rightarrow \pi^*$	7.51	0.363	38a-40a	57.9
S_{14}	$\pi \rightarrow \pi^*$	7.90	0.005	36a-41a	24.4
	$n \rightarrow \pi^* / R_{3s}$			37a-42a	12.7
S ₁₅	$\pi \rightarrow \pi^* / R_{3s}$	7.97	0.011	39a-44a	40.3
S ₁₆	$n \rightarrow \pi^*$	8.01	0.009	33a-40a	39.7
				37a-45a	18.9
S_{17}	$\pi \rightarrow \pi^*$	8.10	0.103	36a-41a	22.0
	$n \rightarrow \pi^* / R_{3s}$			37a-42a	20.3
S_{18}	$\pi \rightarrow \pi^*$	8.20	0.013	34a-40a	40.9
				39a-45a	11.2
S ₁₉	$n \rightarrow R_{3s}$	8.42	0.011	37a-43a	72.8
S ₂₀	$\pi \rightarrow \pi^* / R_{3s}$	8.45	0.018	36a-42a	29.6
				39a-44a	18.4

D. Guanine – CC2/TZVP

State	Assignment	$\Delta E (eV)$	f	Main contribution	%
\mathbf{S}_1	$\pi \rightarrow \pi^*$	5.13	0.194	39a-41a	67.6
\mathbf{S}_2	$n \rightarrow \pi^*$	5.56	0.003	35a-43a	26.7
				37a-43a	22.4
S_3	$\pi \rightarrow \pi^*$	5.67	0.286	39a-43a	83.2
\mathbf{S}_4	$\pi \rightarrow R_{3s}$	6.03	0.005	39a-40a	67.0
S_5	$n \rightarrow \pi^*$	6.21	0.00	37a-41a	50.2
S_6	$n \rightarrow \pi^*$	6.36	0.00	35a-41a	54.7
S_7	$\pi \rightarrow \pi_R^*$	6.57	0.001	39a-42a	79.6
S_8	$n \rightarrow \pi^*$	6.61	0.003	37a-43a	39.8
S_9	$\pi \rightarrow \pi^*$	6.70	0.02	39a-46a	64.4
\mathbf{S}_{10}	$n \rightarrow R_{3s}$	7.13	0.034	35a-40a	22.9
				37a-40a	21.9
S_{11}	$\pi \rightarrow \pi^*$	7.21	0.215	38a-43a	33.5
				36a-41a	17.0
S_{12}	$\pi \rightarrow \pi^*$	7.22	0.254	38a-43a	19.4
				34a-40a	11.8
S_{13}	$\pi \rightarrow \pi^*$	7.31	0.178	38a-41a	33
				38a-43a	14.9
S_{14}	$\pi \rightarrow R_{3s}$	7.33	0.02	39a-45a	58.8
S_{15}	$\pi \rightarrow R_{3s}$	7.36	0.228	39a-44a	30.3
	$\pi \rightarrow \pi^*$			36a-41a	18.7

Е.	Guanine – CC2/TZVP-aug

State	Assignment	$\Delta E (eV)$	f	Main contribution	%
S_1	$\pi \rightarrow R_{3s}$	4.90	0.064	39a-40a	45.2
	$\pi \rightarrow \pi^*$			39a-60a	12.4
\mathbf{S}_2	$\pi \rightarrow \pi^*$	4.97	0.099	39a-60a	34.4
	$\pi \rightarrow R_{3s}$			39a-40a	18.4
S_3	$\pi \rightarrow R_{3s}$	5.30	0.013	39a-41a	71.4
S_4	$\pi \rightarrow \pi^{*}$	5.40	0.269	39a-64a	22.5
				39a-61a	17.7
S_5	$n \rightarrow \pi^*$	5.42	0.026	37a-60a	18.7
				35a-60a	17.2
S_6	$\pi \rightarrow R_{3s}$	5.84	0.005	39a-42a	55.4
S_7	$\pi \rightarrow R_{3s}$	5.95	0.001	39a-45a	33.5
				39a-42a	13.2
S_8	$\pi \rightarrow R_{3s}$	5.99	0.009	39a-43a	35.1
	$\pi \rightarrow R_{3px}$			39a-44a	27.4
S_9	$n \rightarrow R_{3s}$	6.03	0.010	37a-40a	28.7
				35a-40a	14.5
\mathbf{S}_{10}	$n \rightarrow \pi^*$	6.09	0.006	37a-60a	17.2
				37a-64a	15.3
S_{11}	$\pi \rightarrow R_{3px}$	6.21	0.001	39a-44a	39.2
	$\pi \rightarrow R_{3s}$			39a-43a	32.8
S_{12}	$n \rightarrow \pi^*$	6.23	0.001	35a-60a	26.8
				35a-64a	12.6
S_{13}	$\pi \rightarrow \pi^*$	6.33	0.015	39a-77a	21.0
	$\pi \rightarrow R_{3s}$			39a-46a	15.0
S_{14}	$n \rightarrow R_{3s}$	6.37	0.002	37a-41a	20.8
				37a-40a	10.3
S_{15}	$n \rightarrow \pi^*$	6.39	0.001	35a-61a	11.7
				37a-60a	9.3

F. Cytosine –CC2/TZVP

State	Assignment	$\Delta E (eV)$	f	Main contribution	%
S_1	$\pi \rightarrow \pi^*$	4.71	0.051	29a-30a	81.6
\mathbf{S}_2	$n \rightarrow \pi^*$	4.95	0.007	27a-30a	83.7
S_3	$n \rightarrow \pi^*$	5.35	0.009	26a-30a	81.5
\mathbf{S}_4	$\pi \rightarrow \pi^*$	5.77	0.155	28a-30a	84.2
S_5	$n \rightarrow \pi^*$	5.94	0.003	27a-33a	52.3
S_6	$\pi \rightarrow R_{3s}$	6.54	0.311	29a-31a	51.1
	$\pi \rightarrow \pi^*$			29a-33a	29.8
S_7	$\pi \rightarrow \pi^*$	6.66	0.303	29a-33a	40.8
	$\pi \rightarrow R_{3s}$			29a-32a	21.1
S_8	$n \rightarrow \pi^*$	6.76	0.009	26a-33a	38.8
				27a-33a	21.5
S_9	$\pi \rightarrow R_{3s}$	6.93	0.067	28a-31a	31.7
	$\pi \rightarrow \pi^*$			28a-33a	20.4
\mathbf{S}_{10}	$n \rightarrow R_{3s}$	7.13	0.026	27a-31a	46.4
				26a-31a	14.5

G. Cytosine – CC2/TZVP-aug

State	Assignment	$\Delta E (eV)$	f	Main contribution	%
S_1	$\pi \rightarrow \pi^*$	4.61	0.052	29a-41a	25.9
1				29a-42a	20.2
\mathbf{S}_2	$n \rightarrow \pi^*$	4.87	0.007	27a-41a	26.7
-				27a-42a	20.3
S_3	$n \rightarrow \pi^*$	5.27	0.01	26a-41a	24.6
				26a-42a	19.5
S_4	$\pi \rightarrow R_{3s}$	5.44	0.006	29a-30a	64.3
S_5	$\pi \rightarrow \pi^*$	5.64	0.127	28a-41a	24.8
				28a-42a	20.3
S_6	$n \rightarrow \pi^*$	5.79	0.006	27a-53a	22.4
				27a-54a	17.3
S_7	$n \rightarrow R_{3s}$	5.92	0.051	27a-30a	38.2
S_8	$\pi \rightarrow R_{3s}$	6.00	0.026	29a-31a	43.9
S_9	$\pi \rightarrow R_{3s}$	6.04	0.002	28a-30a	32.7
				29a-31a	17.5
\mathbf{S}_{10}	$\pi \rightarrow \pi^*$	6.28	0.388	29a-53a	19.8
				29a-54a	15.8
S_{11}	$\pi \rightarrow R_{3s}$	6.32	0.003	29a-32a	34.1
				29a-35a	10.2
S_{12}	$n \rightarrow R_{3s}$	6.39	0.075	27a-31a	17.8
				26a-30a	15.3
S_{13}	$\pi \rightarrow R_{3px}$	6.52	0.021	29a-34a	55.1
S_{14}	$n \rightarrow R_{3s}$	6.53	0.033	27a-31a	30.5
				26a-30a	18.0
S_{15}	$n \rightarrow \pi^*$	6.59	0.025	26a-53a	11.2
				26a-54a	7.9
S_{16}	$\pi \rightarrow R_{3s}$	6.66	0.03	28a-31a	33.7
S_{17}	$\pi \rightarrow R_{3s}$	6.74	0.01	29a-35a	22.0
S_{18}	$n \rightarrow R_{3s}$	6.75	0.10	27a-32a	29.8
S_{19}	$\pi \rightarrow \pi^*$	6.76	0.07	28a-53a	10
				28a-54a	8.2
S_{20}	$n \rightarrow R_{3s}$	6.91	0.00	26a-31a	31.9
S_{21}	$n \rightarrow R_{3px}$	6.94	0.00	27a-34a	42.3
\mathbf{S}_{22}	$\pi \rightarrow R_{3s}$	6.98	0.00	29a-33a	38.8
S_{23}	$\pi \rightarrow R_{3s}$	7.05	0.00	28a-32a	39.9
S_{24}	$n \rightarrow R_{3s}$	7.14	0.00	27a-35a	18.5
S_{25}	$n \rightarrow R_{3s}$	7.24	0.02	27a-32a	15.0
				26a-32a	14.7

H. Thymine – CC2/TZVP

_						
	State	Assignment	$\Delta E (eV)$	f	Main contribution	%
-	S_1	$n \rightarrow \pi^*$	4.93	0.000	31a-34a	84.6
	S_2	$\pi \rightarrow \pi^*$	5.37	0.197	33a-34a	87.4
	S_3	$n \rightarrow \pi^*$	6.32	0.000	31a-38a	37.9
		$n \rightarrow \pi^*$			30a-34a	36.5
	S_4	$\pi \rightarrow \pi^*$	6.44	0.082	32a-34a	93.7
	S_5	$\pi \rightarrow R_{3s}$	6.68	0.000	33a-35a	69.5
	S_6	$n \rightarrow \pi^*$	6.73	0.000	30a-34a	43.1

				31a-38a	25.7
S_7	$\pi \rightarrow \pi^*$	6.79	0.250	33a-38a	89.9
S_8	$n \rightarrow \pi^*$	7.18	0.000	30a-38a	67.1
S_9	$n \rightarrow R_{3s}$	7.53	0.019	31a-35a	61.8
S_{10}	$\pi \rightarrow R_{3s}$	7.67	0.000	33a-37a	55.0

I. Thymine – CC2/TZVP-aug

State	Assignment	$\Delta E (eV)$	f	Main contribution	%
\mathbf{S}_1	$n \rightarrow \pi^*$	4.83	0.000	31a-45a	44.
S_2	$\pi \rightarrow \pi^*$	5.18	0.178	33a-45a	42.
S_3	$\pi \rightarrow R_{3s}$	5.60	0.000	33a-34a	67.
S_4	$n \rightarrow \pi^*$	6.16	0.000	30a-45a	18.
				31a-61a	17.
S_5	$\pi \rightarrow \pi^*$	6.22	0.016	32a-45a	30.
	$n \rightarrow R_{3s}$			31a-34a	18.
S_6	$n \rightarrow R_{3s}$	6.30	0.082	31a-34a	42.
S_7	$\pi \rightarrow R_{3s}$	6.34	0.001	33a-35a	38.
S_8	$\pi \rightarrow \pi^*$	6.45	0.147	33a-59a	36.
S_9	$\pi \rightarrow R_{3s}$	6.49	0.000	33a-36a	42.
S_{10}	$n \rightarrow \pi^*$	6.55	0.001	30a-45a	25.
S_{11}	$\pi \rightarrow R_{3px}$	6.71	0.012	33a-37a	48.
S_{12}	$n \rightarrow R_{3s}$	6.78	0.098	31a-36a	20.
				31a-34a	15.
S_{13}	$n \rightarrow R_{3s}$	6.94	0.014	30a-34a	24.
				31a-35a	18.
\mathbf{S}_{14}	$n \rightarrow \pi^*$	7.00	0.000	30a-61a	30.
S_{15}	$\pi \rightarrow R_{3s}$	7.02	0.000	32a-34a	38.

J. Uracil – CC2/TZVP

State	Assignment	$\Delta E (\mathrm{eV})$	f	Main contribution	%
S_1	$n \rightarrow \pi^*$	4.89	0.0000	27a-30a	85.1
S_2	$\pi \rightarrow \pi^*$	5.50	0.1987	29a-30a	86.7
S_3	$n \rightarrow \pi^*$	6.25	0.0000	27a-33a	42.6
				26a-30a	32.9
S_4	$\pi \rightarrow \pi^{*}$	6.41	0.0595	28a-30a	94.5
S_5	$n \rightarrow \pi^*$	6.72	0.0002	26a-30a	57.2
				27a-33a	37.4
S_6	$\pi \rightarrow R_{3s}$	6.92	0.0002	29a-31a	90.3
S_7	$\pi \rightarrow \pi^{*}$	6.96	0.1871	29a-33a	89.0
S_8	$n \rightarrow \pi^*$	7.12	0.0000	26a-33a	75.1
S_9	$n \rightarrow R_{3s}$	7.53	0.0580	27a-31a	54.4
	$\pi \rightarrow \pi^*$			28a-33a	21.3
\mathbf{S}_{10}	$\pi \rightarrow \pi^*$	7.66	0.5351	28a-33a	56.9
	$n \rightarrow R_{3s}$			27a-31a	27.3

K. Uracil – CC2/TZVP-aug

State	Assignment	$\Delta E (\mathrm{eV})$	f	Main contribution	%
\mathbf{S}_1	$n \rightarrow \pi^*$	4.80	0.000	27a-40a	44.3
				27a-36a	26.7
\mathbf{S}_2	$\pi \rightarrow \pi^*$	5.32	0.178	29a-40a	41.5
				29a-36a	29.9
S_3	$\pi \rightarrow \pi^*$	5.87	0.002	29a-30a	68.0
S_4	$n \rightarrow \pi^*$	6.09	0.000	27a-51a	34.8
				26a-40a	15.5
S_5	$n \rightarrow \pi^*$	6.21	0.024	28a-40a	41.2
				28a-36a	24.6

III. Optimized geometries at CC2/TZVP level

Cartesian coordinates in Angstrom

A. Adenine

С	0.745129	0.565905	-0.645930
n	0.325563	1.364241	-1.687309
С	-1.047993	1.421215	-1.613009
n	-1.555190	0.728173	-0.608244
С	-0.433260	0.205710	0.016994
n	1.995382	0.195446	-0.335480
С	1.993246	-0.644740	0.711057
n	0.944664	-1.129118	1.409221
С	-0.290307	-0.735573	1.049506
n	-1.355307	-1.177352	1.779989
h	-1.626123	1.990750	-2.324268
h	-1.186126	-2.015987	2.316742
h	-2.259700	-1.097843	1.337886
h	2.965898	-0.994081	1.037655
h	0.924784	1.822429	-2.359759

B. Guanine

С	-1.461583	-0.214045	0.001053
С	-0.464999	0.832910	-0.011600
С	0.892214	0.479185	0.005837
n	1.460020	-0.756240	-0.002765
С	0.561252	-1.715261	0.009299
n	-0.792873	-1.486910	0.015486
n	-0.623077	2.201134	-0.019781
С	0.609433	2.670838	-0.012843
n	1.564227	1.674524	0.000725
n	0.963528	-3.033336	0.090837
0	-2.684451	-0.165242	0.009897
h	-1.430291	-2.276917	0.101457
h	0.409282	-3.699532	-0.438500
h	1.960561	-3.130026	-0.076709
h	0.886808	3.724843	-0.016307
h	2.573723	1.779999	0.008434

C. Cytosine

С	-0.566632	0.750028	-0.004958
n	-1.322989	-0.333549	-0.026840
С	-0.730789	-1.578165	-0.007719
n	0.688364	-1.595305	-0.149899
С	1.458042	-0.480625	-0.050254
С	0.866728	0.741316	0.026443
0	-1.329044	-2.645002	0.090897
n	-1.211573	1.956484	-0.108186
h	1.107704	-2.515561	-0.110852
h	2.530739	-0.624282	-0.064958
h	1.451878	1.647854	0.070739

h	-0.738093	2.767326	0.259317
h	-2.204335	1.909482	0.076270

D. Thymine

0	-0.666471	2.323277	0.00002
С	-0.581012	1.094123	0.00001
С	0.667876	0.336986	0.00000
С	0.603301	-1.016224	-0.00001
n	-0.592498	-1.702682	0.00005
С	-1.838662	-1.089767	0.00000
n	-1.741135	0.294692	-0.00003
С	1.952972	1.103054	-0.00000
h	1.490338	-1.637930	0.00000
h	-0.609410	-2.712767	-0.00002
0	-2.896673	-1.707792	0.00000
h	-2.624718	0.793653	-0.00000
h	2.807985	0.425890	-0.00000
h	2.014054	1.747743	-0.877838
h	2.014054	1.747743	0.877837

E. Uracil

С	0.012104	1.423618	-0.00000
С	-1.159748	0.747608	-0.00000
n	-1.205123	-0.626645	0.00001
С	-0.072891	-1.438985	-0.00000
n	1.103963	-0.706227	0.00000
С	1.271907	0.698194	-0.00000
0	-0.127201	-2.662098	-0.00000
0	2.398575	1.190369	0.00000
h	1.956937	-1.255649	-0.00000
h	-2.086869	-1.119597	-0.00000
h	0.038981	2.502077	-0.00000
h	-2.121487	1.244113	0.00000

References

1 L. Li and D. M. Lubman, Anal. Chem., 1987, **59**, 2538-2541.

2 L. B. Clark, G. G. Peschel and I. Tinoco, J. Phys. Chem., 1965, 69, 3615-3618.

3 H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan and J. S. Lindsey, *Photochem. Photobiol.*, 1998, **68**, 141-142.

4 C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernandez and B. Kohler, *Annu. Rev. Phys. Chem.*, 2009, **60**, 217-239.

5 F. Zaloudek, J. S. Novros and L. B. Clark, J. Am. Chem. Soc., 1985, 107, 7344-7351.