Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010 *Electronic Supplementary Information*

Rules and Trends of Metal Cation Driven Hydride-Transfer

Mechanisms in Metal Amidoboranes

Dong Young Kim, Han Myoung Lee, Jongcheol Seo, Seung Koo Shin and Kwang S. Kim^{*}

Department of Chemistry, Pohang University of Science and Technology

Pohang, 790-784 (Republic of Korea)

E-mail*: kim@postech.ac.kr

Content	ts
---------	----

page

H ₂ -loss pathways from dimeric <i>M</i> (NH ₂ BH ₃)	S1
Fig. S1 Systematic increase of the activation energies in the H-steps	S2
Fig. S2 Resonance $(M-N-B=N\cdots M \leftrightarrow M\cdots N=B-N-M)$ hybrid bonds	S 3
Kinetic scheme of the O/D-pathway	S4
Fig. S3 Microcanonical rate-energy curve at 0 K	S 5
Thermal rate constants of $k_{cat1}/k_{cat1}'/k_{cat2}'$ (in s ⁻¹)	S6
Relative energies along the reaction pathways.	S8

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010 H₂-loss pathways from dimeric *M*(NH₂BH₃) (Figure 1d, e).

 H_2 is released by as $H^{\delta-}$ atom transfer from a boron atom to a $H^{\delta+}$ atom bonded to a nitrogen atom due to an alkali or alkaline-earth metal cation with/without oligomerization, denoted as the **O/D**-pathway. In the **O/D**-pathway, the metal hydride *M*-H in **2**_M is formed in the first reaction step through **T1**_M (1, 2).

$$([M^{I}]^{+}[NH_{2}BH_{3}]^{-})_{2} \rightarrow NH_{2}BH_{2} + H - M^{I} + [M^{I}]^{+}[NH_{2}BH_{3}]^{-}$$
(1)
$$[M^{II}]^{2+}([NH_{2}BH_{3}]^{-})_{2} \rightarrow NH_{2}BH_{2} + [H - M^{II}]^{+}[NH_{2}BH_{3}]^{-}$$
(2)

In the **O**-pathway, the intermolecular N–B bond in 2° forms through $T2^{\circ}(3, 4)$.

$$NH_{2}BH_{2} + H - M^{I} + [M^{I}]^{+}[NH_{2}BH_{3}]^{-} \rightarrow [M^{I}]^{+}[NH_{2}BH_{2}NH_{2}BH_{3}]^{-} + H - M^{I}$$
(3)
$$NH_{2}BH_{2} + [H - M^{II}]^{+}[NH_{2}BH_{3}]^{-} \rightarrow [H - M^{II}]^{+}[NH_{2}BH_{2}NH_{2}BH_{3}]^{-}$$
(4)

Then, first H_2 is released by the ionic recombination of H^{δ_-} with H^{δ_+} through $T2^{O}_{H}$ forming 3^{O} (5, 6).

$[M^{\mathrm{I}}]^{+}[\mathrm{NH}_{2}\mathrm{BH}_{2}\mathrm{NH}_{2}\mathrm{BH}_{3}]^{-} + \mathrm{H} - M^{\mathrm{I}} \rightarrow [M^{\mathrm{I}}]^{+}[M^{\mathrm{I}}]^{+}[\mathrm{NH}_{2}\mathrm{BH}_{2}\mathrm{NH}\mathrm{BH}_{3}]^{2-} + \mathrm{H}_{2}$	(5)
$[\mathrm{H}-M^{\mathrm{II}}]^{+}[\mathrm{NH}_{2}\mathrm{BH}_{2}\mathrm{NH}_{2}\mathrm{BH}_{3}]^{-} \rightarrow [M^{\mathrm{II}}]^{2+}[\mathrm{NH}_{2}\mathrm{BH}_{2}\mathrm{NH}\mathrm{BH}_{3}]^{2-} + \mathrm{H}_{2}$	(6)

Second H₂ also occurs by the formation of M-H, $\mathbf{T3^{o}}_{M} \rightarrow \mathbf{4^{o}}_{M}$ (7, 8), followed by the ionic reaction of the M-H^{$\delta-$} \cdots H^{$\delta+$}-N dihydrogen bond, $\mathbf{T4^{o}}_{H} \rightarrow \mathbf{5^{o}}$ (9, 10).

$[M^{I}]^{+}[M^{I}]^{+}[\mathrm{NH}_{2}\mathrm{BH}_{2}\mathrm{NHBH}_{3}]^{2-} \rightarrow \mathrm{H}^{-}M^{I} + [M^{I}]^{+}[\mathrm{NH}_{2}\mathrm{BH}\mathrm{NHBH}_{3}]^{-}$	(7)
$[M^{\mathrm{II}}]^{2+}[\mathrm{NH}_{2}\mathrm{BH}_{2}\mathrm{NHBH}_{3}]^{2-} \rightarrow [\mathrm{H}-M^{\mathrm{II}}]^{+}[\mathrm{NH}_{2}\mathrm{BH}\mathrm{NHBH}_{3}]^{-}$	(8)
$\mathrm{H-}M^{\mathrm{I}} + [M^{\mathrm{I}}]^{+}[\mathrm{NH}_{2}\mathrm{BHNHBH}_{3}]^{-} \to [M^{\mathrm{I}}]^{+}[M^{\mathrm{I}}]^{+}[\mathrm{NHBHNHBH}_{3}]^{2-} + \mathrm{H}_{2}$	(9)
$[\mathrm{H}-M^{\mathrm{II}}]^{+}[\mathrm{NH}_{2}\mathrm{BH}\mathrm{NHBH}_{3}]^{-} \rightarrow [M^{\mathrm{II}}]^{2+}[\mathrm{NHB}\mathrm{H}\mathrm{NHBH}_{3}]^{2-} + \mathrm{H}_{2}$	(10)

In the **D**-pathway, two molar equivalents of H₂ release without oligomerization by the redox reaction of H^{$\delta-$} and H^{$\delta+$} in **T2**_H \rightarrow **3** (11, 12), by the formation of *M*–H in **T3**_M \rightarrow **4**_M (13, 14), and by the redox reaction of H^{$\delta-$} and H^{$\delta+$} in **T4**_H \rightarrow **5** (15, 16).

$NH_{2}BH_{2} + H - M^{l} + [M^{l}]^{+}[NH_{2}BH_{3}]^{-} \rightarrow [NHBH_{2}]^{-}[M^{l}]^{+} + [M^{l}]^{+}[NH_{2}BH_{3}]^{-} + H_{2}$	(11)
$\mathrm{NH}_{2}\mathrm{BH}_{2} + [\mathrm{H}-M^{\mathrm{II}}]^{+}[\mathrm{NH}_{2}\mathrm{BH}_{3}]^{-} \rightarrow [\mathrm{NHBH}_{2}]^{-}[M^{\mathrm{II}}]^{2+}[\mathrm{NH}_{2}\mathrm{BH}_{3}]^{-} + \mathrm{H}_{2}$	(12)
$[\mathrm{NHBH}_2]^-[\mathcal{M}^{\mathrm{I}}]^+ + [\mathcal{M}^{\mathrm{I}}]^+[\mathrm{NH}_2\mathrm{BH}_3]^- \rightarrow [\mathrm{NHBH}_2]^-[\mathcal{M}^{\mathrm{I}}]^+ + \mathrm{NH}_2\mathrm{BH}_2 + \mathrm{H}_2-\mathcal{M}^{\mathrm{I}}$	(13)
$[\mathrm{NHBH}_2]^-[M^{\mathrm{II}}]^{2+}[\mathrm{NH}_2\mathrm{BH}_3]^- \rightarrow [\mathrm{NHBH}_2]^-[\mathrm{H}-M^{\mathrm{II}}]^+ + \mathrm{NH}_2\mathrm{BH}_2$	(14)
	<i>(</i> - -)

 $[\mathrm{NHBH}_2]^{-}[M^{\mathrm{I}}]^{+} + \mathrm{NH}_2\mathrm{BH}_2 + \mathrm{H}_{-}M^{\mathrm{I}} \rightarrow ([\mathrm{NHBH}_2]^{-}[M^{\mathrm{I}}]^{+})_2 + \mathrm{H}_2$ (15)

 $[NHBH_2]^-[H-M^{II}]^+ + NH_2BH_2 \rightarrow ([NHBH_2]^-)_2[M^{II}]^{2+} + H_2$ (16)

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010

Fig. S1 Systematic increase of the activation energies in the H-steps. Among the H-steps, either $T2_{H}$ or $T4_{H}$ leads to the lowest activation barriers, while $T2_{H}^{O}$ leads to the highest barrier.

Fig. S2 Resonance (*M*–N–B=N···*M* \leftrightarrow *M*···N=B–N–*M*) hybrid bonds in T3^O_M, 4^O_M, T4^O_H and 5^O.

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010 **Kinetic scheme of the O/D-pathway.**

$$1 \underset{k_{-1}}{\overset{k_{1}}{\longleftrightarrow}} 2_{M} \underset{k_{-3}'}{\overset{k_{2}}{\longrightarrow}} 3^{O} \underset{k_{-4}}{\overset{k_{4}}{\longleftrightarrow}} 4^{O}_{M} \underset{M}{\overset{k_{5}}{\longrightarrow}} 5^{O}$$

Applying the steady-state approximation, the rate constants are expressed as follows:

$$1 \xrightarrow{k_{call}} 3^{O} \xrightarrow{k_{cal2}} 5^{O}$$

$$1 \xrightarrow{k_{call}} 3 \xrightarrow{k_{cal2}'} 5$$

$$k_{cat1} = \frac{k_1 k_2 k_3}{k_C}$$

$$k_{cat2} = \frac{k_4 k_5}{k_{-4} + k_5}$$

$$k_{cat1}' = \frac{k_1 k_2' (k_{-2} + k_3)}{k_C}$$

$$k_{cat2}' = \frac{k_3' k_4'}{k_{-3}' + k_4'}$$

$$k_C = (k_{-2} + k_3)(k_{-1} + k_2 + k_2') - (k_2 k_{-2})$$

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010

Fig. S3 Microcanonical rate-energy curve at 0 K for the H₂ release of a) $(K^{+}[NH_2BH_3]^{-})_2$, b) $(Na^{+}[NH_2BH_3]^{-})_2$, c) $(Li^{+}[NH_2BH_3]^{-})_2$, d) $Ca^{2+}([NH_2BH_3]^{-})_2$, e) $Mg^{2+}([NH_2BH_3]^{-})_2$, and f) $K^{+}Li^{+}([NH_2BH_3]^{-})_2$.

Supplementary Material (ESI) for *PCCP* This journal is \mathbb{O} the Owner Societies 2010 Thermal rate constants of k_{cat1}/k_{cat2}' (in s⁻¹).

Table S1 Rate constants of k_{cat1}/k_{cat2}' (in s⁻¹) at 100–1000 K of the H₂-release reaction in (K⁺[NH₂BH₃]⁻)₂.

<i>T</i> (K)	k _{cat1}	$k_{\rm cat1}'$	$k_{\rm cat2}'$
100	1.55×10^{-75}	3.53×10^{-67}	1.20×10^{-64}
200	4.00×10^{-32}	2.82×10^{-27}	3.29×10^{-26}
300	1.41×10^{-17}	6.86×10^{-14}	2.57×10^{-13}
400	2.35×10^{-10}	3.76×10^{-7}	7.98×10^{-7}
500	4.33×10^{-6}	4.41×10^{-3}	6.69×10^{-3}
600	2.69×10^{-3}	$2.36 \times 10^{\circ}$	$2.87 \times 10^{\circ}$
700	2.49×10^{-1}	2.14×10^{2}	2.23×10^{2}
800	7.07×10^{0}	6.24×10^{3}	5.90×10^{3}
900	8.85×10^{1}	8.13×10^{4}	7.39×10^{4}
1000	5.92×10^2	5.61×10^{5}	5.26×10^{5}

Table S2 Rate constants of k_{cat1}/k_{cat2} (in s⁻¹) at 100–1000 K of the H₂-release reaction in (Na⁺[NH₂BH₃]⁻)₂.

	<i>T</i> (K)	k _{cat1}	k _{cat1} '	$k_{\rm cat2}'$
ľ	100	2.62×10^{-59}	2.68×10^{-63}	2.43×10^{-61}
	200	3.40×10^{-24}	1.17×10^{-25}	2.75×10^{-24}
	300	1.43×10^{-12}	4.94×10^{-13}	7.95×10^{-12}
	400	8.80×10^{-7}	1.11×10^{-6}	1.47×10^{-5}
	500	2.59×10^{-3}	7.58×10^{-3}	8.63×10^{-2}
	600	5.31×10^{-1}	2.80×10^{0}	2.83×10^{1}
	700	2.39×10^{1}	1.94×10^{2}	1.77×10^{3}
	800	4.14×10^{2}	4.67×10^{3}	3.92×10^{4}
	900	3.72×10^{3}	5.33×10^{4}	4.28×10^{5}
	1000	2.01×10^{4}	3.39×10^{5}	2.76×10^{6}
1				

Table S3 Rate constants of k_{cat1}/k_{cat2} (in s⁻¹) at 100–1000 K of the H₂-release reaction in (Li⁺[NH₂BH₃]⁻)₂.

<i>T</i> (K)	k _{cat1}	k _{cat1} '	$k_{\rm cat2}$ '
100	6.65×10^{-63}	5.68×10^{-70}	4.04×10^{-67}
200	1.11×10^{-25}	2.85×10^{-28}	3.19×10^{-27}
300	2.71×10^{-13}	3.33×10^{-14}	8.72×10^{-14}
400	4.15×10^{-7}	4.13×10^{-7}	5.20×10^{-7}
500	2.14×10^{-3}	7.98×10^{-3}	6.47×10^{-3}
600	6.43×10^{-1}	5.99×10^{0}	3.62×10^{0}
700	3.83×10^{1}	6.95×10^{2}	3.42×10^{2}
800	8.23×10^{2}	2.46×10^{4}	1.05×10^{4}
900	8.77×10^{3}	3.73×10^{5}	1.49×10^{5}
1000	5.44×10^{4}	2.93×10^{6}	1.18×10^{6}

Table S4 Rate constants of k_{cat1}/k_{cat2} (in s⁻¹) at 100–1000 K of the H₂-release reaction in Ca²⁺([NH₂BH₃]⁻)₂.

<i>T</i> (K)	k _{cat1}	k _{cat1} '	$k_{\rm cat2}'$
100 200	$\frac{1.67 \times 10^{-83}}{1.17 \times 10^{-36}}$	$\begin{array}{c} 3.85 \times 10^{-67} \\ 3.01 \times 10^{-27} \end{array}$	$\begin{array}{c} 4.35 \times 10^{-65} \\ 2.40 \times 10^{-26} \end{array}$

Sup	plementary N	faterial (ESI)	for PCCP
This	journal is © t	he Owner So	cieties 2010
300	4.96×10^{-21}	6.70×10^{-14}	2.59×10^{-13}
400	3.40×10^{-13}	3.41×10^{-7}	9.38×10^{-7}
500	1.78×10^{-8}	3.76×10^{-3}	8.44×10^{-3}
600	2.57×10^{-5}	1.90×10^{0}	3.75×10^{0}
700	4.70×10^{-3}	1.65×10^{2}	2.97×10^{2}
800	2.33×10^{-1}	4.70×10^{3}	7.99×10^{3}
900	4.61×10^{0}	6.25×10^{4}	1.04×10^{5}
1000	4.51×10^{1}	4.69×10^{5}	7.88×10^{5}

Table S5 Rate constants of k_{cat1}/k_{cat2}' (in s⁻¹) at 100–1000 K of the H₂-release reaction in Mg²⁺([NH₂BH₃]⁻)₂.

<i>T</i> (K)	k _{cat1}	$k_{\rm cat1}'$	$k_{\rm cat2}'$
100	5.19×10^{-89}	3.01×10^{-67}	6.05×10^{-67}
200	8.05×10^{-39}	2.22×10^{-27}	2.94×10^{-27}
300	3.90×10^{-22}	5.46×10^{-14}	6.35×10^{-14}
400	8.36×10^{-14}	2.95×10^{-7}	3.25×10^{-7}
500	8.33×10^{-9}	3.37×10^{-3}	3.62×10^{-3}
600	1.80×10^{-5}	1.75×10^{0}	1.86×10^{0}
700	4.38×10^{-3}	1.56×10^{2}	1.64×10^{2}
800	2.65×10^{-1}	4.56×10^{3}	4.80×10^{3}
900	6.02×10^{0}	6.22×10^{4}	6.65×10^{4}
1000	6.47×10^{1}	4.77×10^{5}	5.33×10^{5}

Table S6 Rate constants of k_{cat1}/k_{cat1}' (in s⁻¹) at 100–1000 K of the H₂-release reaction in $(Li^+[NH_2BH_2CH_3]^-)_2$ and $K^+Li^+([NH_2BH_3]^-)_2$.

	(Li ⁺ [NH ₂ BH ₂ CH ₃] ⁻) ₂	K ⁺ Li ⁺ ([N]	$H_2BH_3]^-)_2$
<i>T</i> (K)	k _{cat1}	k _{cat1}	k _{cat1} '
100	7.99×10^{-63}	3.56×10^{-63}	1.43×10^{-64}
200	$1.73 imes 10^{-24}$	6.63×10^{-26}	3.47×10^{-26}
300	$1.50 imes10^{-11}$	1.58×10^{-13}	2.65×10^{-13}
400	$5.08 imes 10^{-5}$	2.35×10^{-7}	8.06×10^{-7}
500	$4.50 imes10^{-1}$	1.18×10^{-3}	6.60×10^{-3}
600	$2.01 imes 10^2$	3.48×10^{-1}	2.77×10^{0}
700	$1.58 imes 10^4$	2.03×10^{1}	2.12×10^{2}
800	3.80×10^{5}	4.31×10^{2}	5.49×10^{3}
900	3.60×10^{6}	4.50×10^{3}	6.65×10^{4}
1000	1.60×10^{7}	2.72×10^{4}	4.43×10^{5}

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010 **Relative energies along the reaction pathways.**

Table S7 MP2/6-311++G** relative energies (ΔE) and ZPE-corrected energies (ΔE_0) for (K⁺/Na⁺/Li⁺[NH₂BH₃]⁻)₂ and Ca²⁺/Mg²⁺([NH₂BH₃]⁻)₂ along the **O**-pathway.

		1	$T1_M$	2 _M	T2 ^O	2 ⁰	T2 ⁰ _H	3 ⁰	T3 ⁰ _M	4 ⁰ _M	T4 ⁰ _H	5 ⁰
Κ	ΔE	0.00	39.36	33.92	41.83	17.96	36.46	15.81	38.56	22.45	31.57	20.89
	ΔE_0	0.00	36.14	30.90	39.12	17.35	34.88	9.30	29.73	14.38	20.62	8.49
Na	ΔE	0.00	32.76	29.13	34.13	9.99	35.73	18.33	35.41	17.32	35.21	21.93
	ΔE_0	0.00	30.00	26.31	31.84	10.02	32.25	12.01	26.82	9.57	24.79	9.59
Li	ΔE	0.00	31.08	29.50	32.34	11.91	37.87	12.17	30.51	20.27	39.39	19.88
	ΔE_0	0.00	27.85	26.48	29.95	11.42	34.00	5.94	21.83	11.92	28.00	7.06
Ca	ΔE	0.00	39.27	36.29	39.25	16.46	46.38	39.77	45.32	27.25	52.87	42.48
	ΔE_0	0.00	35.72	33.36	36.49	15.90	42.92	33.38	37.23	18.92	42.34	29.54
Mg	ΔE	0.00	26.21	26.19	27.00	2.15	49.46	43.49	47.49	16.92	58.28	45.97
	ΔE_0	0.00	23.07	23.35	24.76	2.18	45.95	36.43	38.90	8.67	47.12	31.85

Table S8 MP2/6-311++G** relative energies (ΔE) and ZPE-corrected energies (ΔE_0) for (K⁺/Na⁺/Li⁺[NH₂BH₃]⁻)₂ and Ca²⁺/Mg²⁺([NH₂BH₃]⁻)₂ along the **D**-pathway.

		Т2 _н	3	T3 _M	$4_{\rm M}$	$T4_{H}$	5
K	ΔE	39.22	20.20	58.08	53.48	57.98	39.00
	ΔE_0	33.46	12.77	47.64	42.99	44.73	23.84
Na	ΔE	39.67	18.11	51.37	46.61	57.47	35.31
	ΔE_0	34.21	10.77	41.15	36.52	44.28	20.68
Li	ΔE	44.02	16.39	47.76	46.35	58.58	32.21
	ΔE_0	37.55	8.71	37.20	36.04	44.81	17.26
Ca	ΔE	39.86	19.51	58.13	55.99	59.36	39.21
	ΔE_0	34.48	11.94	47.01	45.37	46.37	24.02
Mg	ΔE	41.41	17.27	42.10	41.55	58.46	34.87
	ΔE_0	36.14	9.60	31.54	30.99	45.57	19.55

Table S9 MP2/6-311++G** relative energies (ΔE) and ZPE corrected energies (ΔE_0) for K⁺Li⁺([NH₂BH₃]⁻)₂ along the **O/D**-pathway.

	1	T1 _M	2 _M	T2 ^o	2 ⁰	T2 ⁰ _H	3 ⁰	T2 _H	3
ΔE	0.00	34.32	31.04	35.10	14.51	37.92	14.45	40.25	17.11
ΔE_0	0.00	31.42	28.13	32.86	14.24	34.10	8.32	34.83	9.81

Table S10 MP2/6-311++G** relative energies (ΔE) and ZPE corrected energies (ΔE_0) for (Li⁺[NH₂BH₂CH₃]⁻)₂ along the **D**-pathway.

	1	$T1_{M}$	2 _M	$T2_{\rm H}$	3
ΔE	0.00	25.30	24.32	40.88	13.30
ΔE_0	0.00	22.33	21.20	34.40	5.65