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I. THE BROWNIAN OSCILLATOR MODEL

The MBO Hamiltonian is given by [1–5]
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Here 𝑝𝑗 (𝑃𝑛), 𝑞𝑗 (𝑄𝑛), 𝑚𝑗 (𝑚𝑛), and 𝜔𝑗 (𝜔𝑛) are the momentum, the coordinate, the mass,

and the angular frequency of the 𝑗th (𝑛th) nuclear mode of the primary (bath) oscillators,

respectively. 𝑑𝑗 represents the displacement for the 𝑗th nuclear mode in the excited electronic

state. ℎ̄𝜔0
𝑒𝑔 is the energy separation of the purely electronic levels. 𝐻

′
describes the bath

modes and their coupling to the primary oscillators with a coupling strength 𝑐𝑛𝑗. The cross

terms in 𝑞𝑗𝑄𝑛 are responsible for damping. By defining the energy gap coordinate operator

𝑈 as:

𝑈 = 𝐻𝑒 −𝐻𝑔 − ℎ̄𝜔0
𝑒𝑔. (5)

We can write the correlation function for the 𝑗th mode from the parameters of the Hamil-

tonian:

𝐶𝑗(𝑡) = − 1

2ℎ̄2 [⟨𝑈(𝑡)𝑈(0)𝜌𝑔⟩ − ⟨𝑈(0)𝑈(𝑡)𝜌𝑔⟩] , (6)

where 𝑈(𝑡) is the operator 𝑈 in the interaction representation and 𝜌𝑔 is the equilibrium

ground-state vibrational density matrix:

𝜌𝑔 =
∣𝑔⟩⟨𝑔∣exp(−𝛽�̂�𝑔)

𝑇𝑟
[
exp(−𝛽�̂�𝑔)

] (7)

with 𝛽 = 1/𝑘𝐵𝑇 .

In the present study, we adopt a simple form of the BO model with the bath modes

is assumed to be a constant (i.e., 𝛾𝑗(𝜔) = constant, called Markovian or Ohmic limit) to
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compute PL spectra. For this simple case, the spectral density function reads [3]

𝐶
′′
𝑗 (𝜔) =
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2
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𝜔2𝛾2
𝑗 + (𝜔2

𝑗 − 𝜔2)2
, (8)

where the real part of the self-energy, Σ𝑙(𝜔), is set to zero.

The spectral response function 𝑔(𝑡) can be expressed in terms of the frequency-domain

correlation function 𝐶
′′
𝑗 (𝜔)

𝑔(𝑡) = − 1

2𝜋

∫ ∞
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[1 + coth(𝛽ℎ̄𝜔/2)] (𝑒−𝑖𝜔𝑡 + 𝑖𝜔𝑡− 1). (9)

Finally, the linear absorption and the relaxed fluorescence line shape can be then obtained

from the spectral response function 𝑔(𝑡):

𝜎𝑎𝑏𝑠(𝜔) =
1
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∫ ∞

0
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1
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Re

∫ ∞

0

exp
[
𝑖(𝜔 − 𝜔0

𝑒𝑔 + 𝜆)𝑡− 𝑔∗(𝑡)
]
d𝑡. (11)

Without the coupling to the bath phonons, the Huang-Rhys theory [6] gives a Poisson

distribution for phonon side peaks in the absorption spectrum at zero temperature:

𝜎abs(𝜔) = exp(−𝑆𝑗)
∞∑
𝑛=0

𝑆𝑗
𝑛

𝑛!
𝛿(𝜔 − 𝜔𝑒𝑔 − 𝑛𝜔𝑗) (12)

S here is the intensity ratio between the first and zeroth phonon lines, and can also

be identified with the average number of phonons emitted. For larger S, the Poisson

distribution morphs into a Gaussian centered at S. Upon broadening due to bath dissipation

and thermal effects, the well-resolved phonon peaks will acquire widths that increase with

𝑛. The width of the individual phonon peaks also increase with the temperature, linearly if

the bath is Markovian [7].

II. LIMITING CASES

If there is only one Einstein phonon mode that is coupled to the exciton, no quadratic

term included, and no transfer integral J considered, the Hamiltonian of the system at zero

temperature recovers the form from the independent boson model:

�̂� = 𝐸0𝑎
†𝑎+ 𝑔𝑎†𝑎(𝑏† + 𝑏) + 𝜔0𝑏

†𝑏 (13)
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As the bath phonons are assumed to be dispersionless, for the 0K case, the phonon occupa-

tion factors are zero, thus the Green’s function has the form

𝐺(𝑡) = −𝑖𝜃(𝑡)exp[−𝑖𝑡𝐸0 − 𝑔(1− 𝑖𝜔0𝑡− 𝑒−𝑖𝜔0𝑡)] (14)

The spectral function is the imaginary part of the retarded Green’s function of frequency:

𝐴(𝜔) = −2Im(−𝑖)

∫ ∞

0

𝑑𝑡𝑒𝑖𝜔𝑡exp[−𝑖𝑡𝐸0 − 𝑔(1− 𝑖𝜔0𝑡− 𝑒−𝑖𝜔0𝑡)] (15)

or

𝐴(𝜔) = 2Re

∫ ∞

0

𝑑𝑡exp[𝑖𝑡(𝜔 − 𝐸0 + 𝑔𝜔0)− 𝑔 + 𝑔𝑒−𝑖𝜔0𝑡] (16)

By expanding the 𝑔𝑒−𝑖𝜔0𝑡 part of the exponent in a power series:

exp(𝑔𝑒−𝑖𝜔0𝑡) =
∑
𝑙

𝑔𝑙

𝑙!
𝑒−𝑖𝜔0𝑙𝑡 (17)

it is possible to evaluate the time integral, so that it contains terms such as:∫ ∞

0

𝑑𝑡exp[𝑖𝑡(𝜔 − 𝐸0 + 𝑔𝜔0 − 𝜔0𝑙)] =
𝑖

𝜔 − 𝐸0 + 𝑔𝜔0 − 𝜔0𝑙 + 𝑖𝛿
(18)

If the limit 𝛿 → 0 is taken,

𝑖

𝜔 − 𝐸0 + 𝑔𝜔0 − 𝜔0𝑙 + 𝑖𝛿
= 𝑃

𝑖

𝜔 − 𝐸0 + 𝑔𝜔0 − 𝜔0𝑙
+ 𝜋𝛿(𝜔 − 𝐸0 + 𝑔𝜔0 − 𝜔0𝑙) (19)

The spectral functional can then be expressed as the real part of this time integral, which

is a series of delta functions

𝐴(𝜔) = 2𝜋𝑒−𝑔

∞∑
𝜆=0

𝑔𝑙

𝑙!
𝛿(𝜔 − 𝐸0 + 𝑔𝜔0 − 𝜔0𝑙) (20)

This spectral function provides a Poisson distribution of delta peaks with equal spacing of

𝜔0, which is equivalent to the well-known Huang-Rhys theory[6].
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