A Novel Stabilisation Model for Ruthenium Nanoparticles in Imidazolium Ionic Liquids: *In situ* Spectroscopic and Labelling Evidence

Paul S. Campbell, Catherine C. Santini, Denis Bouchu, Bernard Fenet, Karine Philippot, Bruno Chaudret, Agílio A. H. Pádua, and Yves Chauvin

Electronic supplementary information

1) ESI^+ mass spectrum for IL₂ after deuterium incorporation.

Relative peak intensities from above spectrum

m/z	Intensity	Relative
137.1	7750906.9	100.00
138.1	1824751.6	23.54
139.1	445068.6	5.74
140.1	732534.6	9.45
141.1	998252.5	12.88
142.1	401417.5	5.18
143.1	188360.9	2.43
144.2	93604.7	1.21
145.2	85572.5	1.10
146.2	85245.4	1.10
147.2	7639.2	0.10
148.2	315.9	0.00
149.2	7.7	0.00
150.2	0.1	0.00

2) ESI^{+} mass spectrum for IL_{3} after deuterium incorporation

IL₃:

Relative intensities of the above spectrum

m/z	Intensity	Relative
173.1	7504755.5	100.00
174.1	2460646.9	32.79
175.1	473357.1	6.31
176.1	117093.6	1.56
177.1	11710.2	0.16
178.1	631.7	0.01
179.1	21.6	0.00
180.1	0.5	0.00
181.1	0.0	0.00

ESI⁺ spectrum – deuterated methylenecyclohexyl region

3) Ethylene Hydrogenation Calculations pV = nRT $V_{reactor} = 125.8 \text{ cm}^3 = 1.258 \times 10^4 \text{ m}^3$ $p_r = 129 \text{ mbar} = 1.29 \times 10^4 \text{ Pa}$ $R = 8.314 \text{ m}^3 \text{ Pa K}^{-1} \text{ mol}^{-1}$ T = 298 K $n = (1.29 \times 10^4 \times 1.258 \times 10^4) / (8.314 \times 298) \text{ m}^3 \text{ Pa m}^{-3} \text{ Pa}^{-1} \text{ K mol K}^{-1} = 6.54 \times 10^{-5} \text{ mol ethylene introduced}$ GC calibration results: $2.3 \times 10^{-12} \times A = no.$ moles of C 300µL injections = 3×10^{-7} m³

Table 1.	GC re	esults f	follow	ing	treatment	under	ethvlen	ne
1 4010 1.	0010	courto i	0110 11	1115	u cuuliiciit	anaor	Ctil y 1011	÷

Species	Ret time/ mins Peak Area		No. Moles of C	No. of Moles	No. of Moles
				(in 300 µL)	(in reactor)
ethane	4.816	2.31×10^4	5.3×10 ⁻⁸	2.7×10 ⁻⁸	1.1×10 ⁻⁵
ethylene	5.094	6.57×10^4	1.5×10-7	7.6×10 ⁻⁸	3.2×10 ⁻⁵
isobutane	8.322	367	8.4×10^{-10}	2.1×10^{-10}	8.8×10 ⁻⁸
butenes	10.5	805	1.9×10 ⁻⁹	4.6×10 ⁻¹⁰	1.9×10 ⁻⁷

 $C_2H_4 + H_2 \rightarrow C_2H_6$:

1 mole ethane produced = 1 mole H₂ consumed, i.e. 2 moles of surface hydrides $2C_2H_4 + H_2 \rightarrow C_4H_{10}$:

1 mole isobutane produced = 1 mole H₂ consumed, i.e. 2 moles of surface hydrides $2C_2H_4 \rightarrow C_2H_8$

1 mole butene produced = No H_2 consumed

		0			
Species	<i>Ret time/</i>	Peak Area	No. Moles of C	No. of Moles	No. of Moles
	mins			(in 300 µL)	(in reactor)
methane	4.501	4.79×10^{3}	1.1 ×10 ⁻⁸	1.1 ×10 ⁻⁸	4.6 ×10 ⁻⁶
ethane	4.826	1.69×10^4	3.9 ×10 ⁻⁸	1.9 ×10 ⁻⁸	8.1 ×10 ⁻⁶
n-propane	5.871	8.47×10^{3}	1.9 ×10 ⁻⁸	6.5 ×10 ⁻⁹	2.7 ×10 ⁻⁶
n-butane	8.753	4.04×10^{3}	9.2×10 ⁻⁹	2.3 ×10 ⁻⁹	9.7 ×10 ⁻⁷
n-pentane	12.434	463	1.1×10 ⁻⁹	2.1 ×10 ⁻¹⁰	8.9 ×10 ⁻⁸

Table 2: GC results following treatment under H₂ liberating surface alkyls

 $\frac{1}{2}$ C₂H₄ + $\frac{1}{2}$ H₂ \rightarrow -CH₃

1 mole methyl produced = $\frac{1}{2}$ mole H₂ consumed, i.e. 1 mole of surface hydrides C₂H₄ + $\frac{1}{2}$ H₂ \rightarrow -C₂H₅

1 mole ethyl produced = $\frac{1}{2}$ mole H₂ consumed, i.e. 1 mole of surface hydrides 1 $\frac{1}{2}$ C₂H₄ + $\frac{1}{2}$ H₂ \rightarrow -C₃H₇

1 mole propyl produced = $\frac{1}{2}$ mole H₂ consumed, i.e. 1 mole of surface hydrides $2C_2H_4 + \frac{1}{2}H_2 \rightarrow -C_4H_9$

1 mole butyl produced = $\frac{1}{2}$ mole H₂ consumed, i.e. 1 mole of surface hydrides $2\frac{1}{2}C_2H_4 + \frac{1}{2}H_2 \rightarrow -C_5H_{11}$

1 mole pentyl produced = $\frac{1}{2}$ mole H₂ consumed, i.e. 1 mole of surface hydrides

Total surface hydrides counted = $38 \mu mol$

Ethylene Mass balance

 6.54×10^{-5} mol (introduced) - 6.02×10^{-5} mol (detected by GC) = 5.2μ mol ~ 8% error

4) TON calculations

Butenyl IL \rightarrow butyl IL

 $\begin{aligned} & \text{Ru}(\text{COT})(\text{COD}) - 2.2 \times 10^{-4} \text{ moles} \\ & \text{RuNPs}, \ 1.1 \pm 0.2 \text{ nm}, \ \text{dispersion} \sim 75\% \\ & \text{Ru}_{\text{s}} - 1.7 \times 10^{-4} \text{ moles} \\ & \text{Butenyl IL} \quad 7.5\text{g}/\ 417\text{g mol}^{-1} = 1.8 \times 10^{-2} \text{ moles} \\ & 15 \% \text{ converted} \Rightarrow 2.7 \times 10^{-3} \text{ moles} \\ & \text{TON} \Rightarrow 2.7 \times 10^{-3} \text{ moles} / 1.7 \times 10^{-4} \text{ moles} = \underline{16} \end{aligned}$

Benzyl IL \rightarrow methylenecyclohexyl IL

 $\begin{aligned} & \text{Ru}(\text{COT})(\text{COD}) - 2.2 \times 10^{-4} \text{ moles} \\ & \text{RuNPs}, \ 3.2 \pm 0.7 \text{ nm}, \ \text{dispersion} \sim 35\% \\ & \text{Ru}_{\text{s}} - 7.7 \times 10^{-5} \text{ moles} \\ & \text{Benzyl IL} \quad 7.5g/\ 453g\ \text{mol}^{-1} = 1.7 \times 10^{-2} \text{ moles} \\ & 30\% \text{ converted} \rightarrow 4.9 \times 10^{-3} \text{ moles} \\ & \text{TON} \rightarrow 4.9 \times 10^{-3} \text{ moles} = \underline{64} \end{aligned}$