Supporting Information for Enantiospecific adsorption of amino acids on hydroxylated quartz $(10\overline{1}0)$

Jeong Woo Han and David S. Sholl

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0100, USA

Email: david.sholl@chbe.gatech.edu

Below, Table S.1 and S.2 list energetic and structural information for hydroxylated a-

quartz $(10\overline{1}0)$ surface upon the adsorption of amino acids, repectively.

Amino Aci	d	Gly	Ala	Ser	Cys	Asp	Asn
E (N)	R	0.71 (0.67)	0.73 (0.72)	0.76 (0.73)	0.81 (0.78)	0.78 (0.76)	0.72 (0.67)
$\mathbf{L}_{ad}(\mathbf{ev})$	S		0.75 (0.75)	0.72 (0.70)	0.81 (0.78)	0.88 (0.84)	0.76 (0.71)

Table S.1: Adsorption energies of amino acids in their most stable states on hydroxylated α -quartz (1010). The zero point corrected adsorption energies are also listed in the parentheses.

							carboxyl group	amine group	side chain
	SiOH	<i>d</i> (О-Н) /Å	<i>d</i> (HO) /Å	d(S1-O) /Å	∠(0-H0) /°	∠(S1-O-H) /°	$d(\mathbf{H}_{\mathrm{surf}}\mathbf{O}_{\mathrm{mole}})/\mathrm{\AA}$		$d(\mathbf{H}_{\mathrm{surf}}\mathbf{O}_{\mathrm{mole}})/\mathrm{\AA}$
		/11	/11	/11	7	7	$d(\mathbf{O}_{\mathrm{surf}}\mathbf{H}_{\mathrm{mole}})/\mathrm{\AA}$	$a(\mathbf{m}_{surf} \dots \mathbf{N}_{mole})/\mathbf{A}$	$d(O_{surf}H_{mole})/Å$
Bare	a	0.98	2.52	1.65	155	116			_
surface	b	0.99	1.72	1.62	177	120	-	-	-
Gly	1a/b	0.98, 1.01	2.28, 1.62	1.66, 1.62	158, 178	115, 119	2 (1	1.52	
	2a/b	0.98, 1.00	2.89, 1.69	1.65, 1.61	137, 179	122, 119	2.01		-
	3a/b	1.07, 1.00	3.25, 1.64	1.62, 1.64	108, 179	124, 120	1.67		_
	4a/b	0.98, 1.00	2.37, 1.71	1.66, 1.62	157, 176	115, 119	1.07		_
<i>R</i> -Ala	1a/b	0.98, 1.01	2.27, 1.61	1.66, 1.62	158, 178	115, 119	2.59		
	2a/b	0.98, 0.99	2.90, 1.69	1.65, 1.61	148, 179	122, 119	2.38	1.50	-
	3a/b	1.08, 1.01	3.27, 1.64	1.61, 1.64	107, 179	123, 121	1.65	1.50	_
	4a/b	0.98, 0.99	2.36, 1.71	1.65, 1.62	157, 175	115, 119	1.05		_
S-Ala	1a/b	0.98, 1.01	2.28, 1.62	1.66, 1.62	159, 179	115, 119	2.49	1.51	
	2a/b	0.98, 0.99	2.91, 1.70	1.65, 1.61	148, 179	123, 120	2.48		-
	3a/b	1.07, 1.00	3.29, 1.63	1.61, 1.64	106, 179	123, 120	1.67		_
	4a/b	0.98, 1.00	2.31, 1.70	1.65, 1.62	158, 173	114, 119	1.07		
<i>R</i> -Ser	1a/b	0.98, 1.01	2.48, 1.62	1.66, 1.62	152, 179	116, 119	1.96	1.59	
	2a/b	0.99, 0.99	3.17, 1.72	1.64, 1.61	127, 175	128, 120	1.60		-
	3a/b	1.05, 1.00	3.64, 1.69	1.62, 1.62	93, 177	122, 121			1 92
	4a/b	0.98, 1.01	2.30, 1.59	1.65, 1.65	158, 175	116, 117	1.04		1.92
S-Ser	1a/b	0.99, 1.01	2.24, 1.62	1.66, 1.62	159, 179	115, 119	2.51	1.53	
	2a/b	0.98, 0.99	2.94, 1.70	1.65, 1.61	147, 179	122, 120	2.31		-
	3a/b	1.07, 1.01	3.31, 1.63	1.62, 1.64	106, 178	123, 120	1.66		_
	4a/b	0.98, 1.00	2.32, 1.71	1.65, 1.63	157, 173	115, 119			-

Supplementary Material (ESI) for PCCP This journal is $\textcircled{\mbox{\scriptsize C}}$ the Owner Societies 2010

	1a/b 2a/b	0.99, 1.01	2.23, 1.62	1.66, 1.62	159, 179 148, 179	115, 119	2.45		-
<i>R</i> -Cys	2a/D 3a/h	1.98, 0.99 1.07 1.01	2.94, 1.70	1.03, 1.01 1.62, 1.64	146, 179	123, 119		1.52	
	4a/b	0.98, 1.00	2.32, 1.71	1.62, 1.62	157, 173	115, 119	1.66		-
	1a/b	0.99, 1.01	2.22, 1.63	1.66, 1.62	160, 179	115, 120	2.40		
S-Cys	2a/b	0.98, 0.99	2.99, 1.70	1.65, 1.61	146, 179	123, 120	1.63	1.54	-
	3a/b	1.06, 1.01	3.35, 1.62	1.62, 1.64	104, 179	124, 121			_
	4a/b	0.98, 1.00	2.30, 1.71	1.65, 1.62	158, 173	115, 119	1.05		
R-Asp	1a/b	0.98, 1.00	2.38, 1.66	1.66, 1.60	154, 178	115, 121	_	1.68	1.92
	2a/b	0.97, 0.99	3.10, 1.73	1.66, 1.60	135, 173	119, 122			1.72
	3a/b	1.03, 1.01	3.78, 1.61	1.61, 1.64	104, 179	126, 121	1.81		1.55
	4a/b	0.99, 1.00	4.72, 1.66	1.64, 1.65	130, 177	120, 117	1.01		1.55
S-Asp	1a/b	0.99, 1.00	2.04, 1.69	1.66, 1.60	163, 177	114, 121	1 74	1.65	2.01
	2a/b	0.99, 1.01	2.94, 1.61	1.64, 1.64	142, 171	128, 118	1./ 4		2.01
	3a/b	1.03, 1.01	4.10, 1.58	1.62, 1.64	112, 178	125, 119	1.56		1.61
	4a/b	1.00, 1.00	4.47, 1.70	1.64, 1.63	137, 171	123, 117	1.50		1.01
	1a/b	0.98, 1.01	2.42, 1.60	1.66, 1.60	156, 177	115, 125			1.01
R-Asn	2a/b	0.98, 1.00	2.49, 1.71	1.66, 1.63	160, 177	114, 121	-	1.61	1.91
	3a/b	1.04, 0.99	4.13, 1.71	1.62, 1.63	112, 176	121, 119	1.74		2.17
	4a/b	1.00, 0.99	3.11, 1.72	1.64, 1.63	125, 175	121, 118	1./4		2.17
S-Asn	1a/b	0.99, 1.00	2.05, 1.66	1.66, 1.60	165, 177	114, 122	1.81	1.61	1.08
	2a/b	0.99, 1.01	3.05, 1.64	1.64, 1.64	137, 170	128, 119			1.70
	3a/b	1.04, 1.00	4.06, 1.62	1.62, 1.62	114, 177	122, 119			1.95
	4a/b	0.99, 1.00	4.56, 1.69	1.64, 1.64	130, 173	123, 117	1.50		1.75

Table S.2: Selected bond lengths or angles of the DFT-optimized geometries of adsorbed amino acids on hydroxylated α -quartz (1010). Structural information for the bare surface is also included.