Supporting Information for

Wavelet Transform EXAFS Analysis of Mono-

and Dimolybdate Model Compounds and a Mo/HZSM-5

Dehydroaromatization Catalyst

Robert O. Savinelli and Susannah L. Scott

Table of Contents

Page

Table S1	WT	maxima	for	model	molybdates	and	а	supported	catalyst,	S3
	Mo/I	HZSM-5								

- **Table S2**Calculated *R*-space and *q*-space maxima for individual EXAFSS4paths
- **Figure S1** Crystal structures of (a) MgMoO₄, showing isolated MoO₄²⁻ S6 tetrahedra; and (b) MgMo₂O₇, showing oxygen-bridged MoO₃ groups
- Figure S2Powder XRD pattern of MgMo2O7S7
- **Figure S3** Raw X-ray absorption spectra of (a) MgMoO₄, (b) MgMo₂O₇, and S7 (c) Mo/HZSM-5
- Figure S4 Comparison of the k^1 -weighted EXAFS of (a) MgMoO₄, (b) S8 MgMo₂O₇, and (c) Mo/HZSM-5
- Figure S5Calculated WT plots for Mo-O-O pathsS9

Table of Contents, cont.Page

- Figure S6Calculated WT plots for Mo-O pathsS10
- Figure S7Calculated WT plots for Mo-Mg-O pathsS11
- Figure S8Calculated WT plots for Mo-Mg pathsS12
- Figure S9Calculated WT plots for Mo-Si pathsS13
- Figure S10Calculated WT plots for Mo-Mo-O pathsS14
- Figure S11Calculated WT plots for Mo-Mo pathsS15
- **Table S3**Positions of calculated WT maxima for individual EXAFS pathsS16
- **Figure S12** EXAFS and curvefits for MgMoO₄ and MgMo₂O₇, omitting key S17 multiple-scattering paths
- Table S4Comparison of crystal structure-derived distances with FT EXAFSS18curvefit parameters for MgMoO4 obtained using a model that omitskey multiple-scattering paths
- Table S5Comparison of crystal structure-derived distances with FT EXAFSS19curvefit parameters for MgMo2O7 obtained using a model that omits
a key multiple-scattering path

S2

Compound	Feature	$\overset{k}{\mathbb{A}^{-1}}$	$R + \alpha$ Å
MgMoO ₄	A ^a	5.85	1.18
	В	4.85	2.80
	С	6.80	2.83
	D	8.10	3.05
	Е	10.13	3.18
MgMo ₂ O ₇	F ^a	5.80	1.14
	G	5.12	2.6 - 2.9
	Н	7.00	3.08
	Ι	7.9 - 8.7	3.0
	J	10.13	3.20
	K	12.85	3.15
Mo/HZM-5	L ^a	6.24	1.08
	М	4.95	2.90
	Ν	8.68	2.58
	0	11.10	2.82
	Р	13.15	2.70

Table S1. WT maxima observed for model molybdates and Mo/HZSM-5

^a Evaluated using ($\kappa = 3$, $\sigma = 1$), rather than ($\kappa = 5$, $\sigma = 1$).

Path	FEFF Par	rameters ^a	Ma	Maxima		
-	<i>R</i> (Å)	σ^2 (Å ²)	$k (\text{\AA}^{-1})^b$	$R(\text{\AA})^c$		
Mo-O	1.75	0.0010	5.70	1.41		
Mo-O	1.75	0.0015	5.68	1.40		
Mo-O	1.75	0.0020	5.51	1.38		
Mo-O	1.75	0.0025	5.42	1.36		
Mo-O	3.00	0.0010	6.20	2.70		
Mo-O	3.00	0.0015	6.17	2.67		
Mo-O	3.00	0.0020	6.15	2.64		
Мо-О	3.00	0.0025	6.10	2.61		
Мо-О-О	3.20	0.0010	3.98	2.70		
Mo-O-O	3.20	0.0025	3.92	2.63		
Mo-O-O	3.60	0.0010	4.05	3.00		
Мо-О-О	3.60	0.0025	3.98	2.98		
Mo-O-O	4.70	0.0010	4.07	4.42		
Мо-О-О	4.70	0.0025	4.00	4.42		
Мо-О-О	4.70	0.0080	3.90	4.43		
Mo-Mg	3.30	0.0010	9.20	3.02		
Mo-Mg	3.30	0.0025	7.22	2.97		
Mo-Mg	3.70	0.0010	8.65	3.41		
Mo-Mg	3.70	0.0025	7.80	3.38		
Mo-Mg-O	3.50	0.0010	6.70	3.15		
Mo-Mg-O	3.50	0.0025	6.15	3.06		
Mo-Mg-O	3.80	0.0010	7.20	3.45		
Mo-Mg-O	3.80	0.0025	6.60	3.37		
Mo-Mo-O	3.60	0.0010	12.65	3.28		
Mo-Mo-O	3.60	0.0025	11.10	3.26		
Mo-Mo-O	3.75	0.0010	12.85	3.43		
Mo-Mo-O	3.75	0.0025	11.15	3.41		

Table S2. Calculated *R*-space and *q*-space maxima for individual EXAFS paths

Mo-Mo	3.40	0.0010	13.28	3.14
Mo-Mo	3.40	0.0025	11.60	3.13
Mo-Mo	3.50	0.0015	12.70	3.23
Mo-Mo	3.50	0.0020	12.10	3.23
Mo-Mo	3.50	0.0025	11.80	3.23
Mo-Mo	3.50	0.0040	10.40	3.22
Mo-Mo	3.50	0.0060	9.55	3.22
Mo-Mo	3.50	0.0080	9.10	3.22
Mo-Mo	3.50	0.0100	8.50	3.22
Mo-Mo	3.60	0.0010	13.05	3.34
Mo-Mo	3.60	0.0025	12.90	3.33
Mo-Mo	3.60	0.0040	10.30	3.31
Mo-Mo	3.70	0.0010	13.00	3.44
Mo-Mo	3.70	0.0025	11.90	3.43
Mo-Mo	3.70	0.0040	10.49	3.42
Mo-Mo	4.00	0.0010	13.65	3.74
Mo-Mo	4.00	0.0025	12.00	3.73
Mo-Mo	4.00	0.0040	10.50	3.71
Mo-Mo	4.00	0.0080	9.10	3.71
Mo-Mo	4.00	0.0010	8.60	3.71
Mo-Mo	4.70	0.0010	13.5	4.44
Mo-Mo	4.70	0.0040	10.6	4.42
Mo-Mo	4.70	0.0080	9.30	4.39
Mo-Mo	4.70	0.010	8.75	4.39

 $\frac{100-100}{a}\Delta E_0 = 0 \text{ eV}.$ ^b Maximum of q-space magnitude plot. ^c Without phase correction.

Fig. S1. Crystal structures of (a) MgMoO₄, showing isolated MoO₄²⁻ tetrahedra;¹ and (b) MgMo₂O₇, showing oxygen-bridged MoO₃ groups.²

References

- 1. V. V. Bakakin, R. F. Klevtsova and L. A. Gaponenko, *Kristallogr.*, 1982, **27**, 38-42.
- 2. K. Stadnicka, J. Haber and R. Kozlowski, *Acta Cryst.*, 1977, **B33**, 3859-3862.

Fig. S3. Raw X-ray absorption spectra, collected in transmission mode at SSRL, for (a) MgMoO₄ (BL 4-1), (b) MgMo₂O₇ (BL 2-3), and (c) Mo/HZSM-5 (BL 4-1).

Fig. S4. Comparison of the k^1 -weighted EXAFS of (a) MgMoO₄, (b) MgMo₂O₇, and (c) Mo/HZSM-5.

Fig. S5. Calculated WT plots for Mo-O-O paths. See Table S2 for structural parameters.

Fig. S6. Calculated WT plots for Mo-O paths. See Table S2 for structural parameters.

Fig. S7. Calculated WT plots for Mo-Mg-O paths. See Table S2 for structural parameters.

Fig. S8. Calculated WT plots for Mo-Mg paths. See Table S2 for structural parameters.

Fig. S9. Calculated WT plots for Mo-Si paths. See Table S2 for structural parameters.

Fig. S10. Calculated WT plots for Mo-Mo-O paths. See Table S2 for structural parameters.

Fig. S11. Calculated WT plots for Mo-Mo paths. See Table S2 for structural parameters.

Path	FEFF Parameters ^{<i>a</i>}		Wavelet	Wavelet Transform		
	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	k (Å ⁻¹)	$R(\text{\AA})^b$		
Мо-О-О	3.1	0.003	4.10	2.45	5a	
Мо-О-О	3.1	0.006	4.00	2.43	5b	
Mo-O-O	3.5	0.006	4.00	2.78	5c	
Mo-O-O	3.5	0.009	3.85	2.76	5d	
Mo-O	1.7	0.003	5.45	1.14	6a	
Mo-O	1.7	0.006	5.40	1.17	6b	
Mo-O	3.0	0.006	5.40	2.35	6c	
Mo-O	3.0	0.009	5.00	2.30	6d	
Mo-Mg-O	3.5	0.003	6.40	2.90	7a	
Mo-Mg-O	3.5	0.006	5.90	2.85	7b	
Mo-Mg-O	3.75	0.006	5.90	2.88	7c	
Mo-Mg-O	3.75	0.009	5.60	3.07	7d	
Mo-Mg	3.3	0.003	7.15	2.80	8a	
Mo-Mg	3.3	0.006	7.10	2.80	8b	
Mo-Mg	3.7	0.006	6.40	3.15	8c	
Mo-Mg	3.7	0.009	5.90	3.08	8d	
Mo-Si	2.8	0.003	7.15	2.27	9a	
Mo-Si	2.8	0.006	6.50	2.23	9b	
Mo-Si	3.3	0.006	6.70	2.70	9c	
Mo-Si	3.3	0.009	6.15	2.65	9d	
Mo-Mo-O	3.65	0.003	10.60	3.24	10a	
Mo-Mo-O	3.65	0.006	9.30	3.20	10b	
Mo-Mo-O	3.8	0.006	9.40	3.35	10c	
Mo-Mo-O	2.8	0.007	8.95	2.35	10d	
Mo-Mo	3.3	0.003	11.15	2.93	11a	
Mo-Mo	3.3	0.006	9.60	2.91	11b	
Mo-Mo	3.7	0.006	9.70	3.30	11c	
Mo-Mo	3.7	0.009	8.80	3.30	11d	

Table S3. Positions of calculated WT maxima for individual EXAFS paths

 ${}^{a}\Delta E_{0} = 0 \text{ eV}. {}^{b}$ Without phase correction. c See Figs. S5 - S11.

Fig. S12. Left: EXAFS (circles) and curvefit (line) for MgMoO₄, using a model that omits the Mo-Mg paths at 3.450 and 3.577 Å, as well as the Mo-Mg-O path at 3.770 Å. Right: EXAFS (circles) and curvefit (line) for MgMo₂O₇, using a model that omits the Mo-Mo-O path at 3.748 Å. The FT magnitude (a) and real component (b) are shown. Curvefit parameters can be found in Tables S3 and S4.

Path	Ν	$\frac{\text{XRD}^1}{d \mid \text{\AA}}$	EXAFS <i>R</i> / Å	ΔR Å	σ^2 Å ²
Mo=O	2	1.731	1.734	0.003 ± 0.004	0.0026 ± 0.0002
Mo-O	2	1.800	1.803	0.003 ± 0.004	0.0026 ± 0.0002
Mo-O	2	3.087	3.090	0.003 ± 0.004	0.005 ± 0.003
Мо-О-О	12	3.16-3.35	3.276	0.086 ± 0.07	0.005 ± 0.003
Mo-Mg	0	3.449			
Mo-Mg	0	3.576			
Mo-Mg-O	0	3.770			
Mo-Mo	1	4.078	3.390	-0.69 ± 0.01	0.0019 ± 0.0003
Mo-Mo	1	4.078	3.519	-0.56 ± 0.01	0.0014 ± 0.0004
Мо-О-О	2	4.562	4.535	-0.09 ± 0.04	0.010 ± 0.002
Mo-Mo	4	4.625	4.565	0.003 ± 0.004	0.010 ± 0.002
Mo-Mo	2	4.780	4.783	0.003 ± 0.004	0.010 ± 0.002
Mo-O-O	8	4.790	4.793	0.003 ± 0.004	0.010 ± 0.002

Table S4. Comparison of crystal structure-derived distances with the FT EXAFS curvefit parameters^a for MgMoO₄, obtained using a model that omits several key paths

^a Theoretical paths were generated using Feff 8.20. The number of independent data points is 24.2. Coordination numbers were fixed at their crystal structure values, except for the Mo-Mg and Mo-Mg-O paths at 3.449, 3.576, and 3.770 Å, which were omitted. S_0^2 and ΔE_0 were refined as global parameters, giving (0.99 ± 0.03) and (-7.7 ± 1.0) eV, respectively. Ten other parameters were varied during the fit: five for ΔR and five for σ^2 .

Path	N	XRD ² d / Å	EXAFS R / Å	ΔR Å	σ^2 Å ²
Mo=O	2	1.706 - 1.727	1.723	0.003 ± 0.006	0.0034 ± 0.0004
Mo-O	1	1.744 - 1.781	1.747	0.003 ± 0.006	0.006 ± 0.002
Mo-O	1	1.857 - 1.881	1.860	0.003 ± 0.006	0.006 ± 0.002
Mo-O	0.5	2.859	2.844	-0.02 ± 0.04	0.006 ± 0.002
Mo-Mg	0.5	3.374	3.356	-0.02 ± 0.04	0.006 ± 0.002
Mo-O	0.5	3.374	3.359	-0.02 ± 0.04	0.006 ± 0.002
Mo-Mg	1	3.639 - 3.703	3.569	-0.07 ± 0.02	0.002 ± 0.002
Mo-O	0.5	3.664	3.648	-0.02 ± 0.04	0.006 ± 0.002
Mo-Mo	1	3.685	3.815	0.13 ± 0.07	0.009 ± 0.005
Mo-Mo-O	0	3.711			
Mo-O	0.5	3.713	3.698	-0.02 ± 0.04	0.0034 ± 0.0004
Mo-Mg-O	2	3.720	3.704	-0.02 ± 0.04	0.006 ± 0.002
Mo-Mg-O	1	3.746	3.755	0.01 ± 0.07	0.006 ± 0.002
Mo-Mo	1	4.108	4.074	0.39 ± 0.04	0.007 ± 0.004

Table S5. Comparison of crystal structure-derived distances with FT EXAFS curvefit parameters^a for MgMo₂O₇, obtained by omitting a key multiple-scattering path

^a Theoretical paths were generated for each crystallographically distinct Mo center, using Feff 8.20. The number of independent data points is 24.2. Coordination numbers were fixed at their crystal structure values, except for the Mo-Mo-O path at 3.711 which was omitted. S_0^2 and ΔE_0 were refined as global parameters, giving (0.99 ± 0.03) and (-9.6 ± 1.1) eV, respectively. Eleven other parameters were varied during the fit: six for ΔR and five for σ^2 .