Electronic supplementary information (ESI) available for

Mechanisms of the Knoevenagel Hetero Diels-Alder Sequence in Multicomponent Reactions to Dihydropyrans: Experimental and Theoretical Investigations into the Role of Water

Gilles Frapper,^a* Christian Bachmann,^a Yanlong Gu,^b Rodolphe Coval De Sousa^a and François Jérôme^a* †

^{*a*} Laboratoire de Catalyse en Chimie Organique, Université de Poitiers/CNRS, 40 avenue du recteur Pineau, 86022 Poitiers, France. E-mail: gilles.frapper@univ-poitiers.fr (theoretical part); francois.jerome@univ-poitiers.fr (experimental part)

^b Institute of Physical Chemistry and Industrial Catalysis Department of Chemistry and Chemical Engineering University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, Hubei, China.

E-mail: gilles.frapper@univ-poitiers.fr (theoretical part)

francois.jerome@univ-poitiers.fr (experimental part)

1)	Computational data (energies, structures, Cartesian coordinates)	.page 2
2)	Complete Ref. 30 and 31	page 30
3)	Copy of the ¹ H and ¹³ NMR spectra	.page 31

1) Computational data

Table S1 Calculated total electronic energies $(E_e)^a$, ZPE corrected total electronic energies $(E_e+ZPVE)^a$ and Gibbs free energies $(G_{298})^a$ for gas phase compounds at the B3LYP/6-311++G(d,p) level and solution SCF energies $(E_{sol})^a$ and solution Gibbs free energies $(G_{sol})^{a,d}$ for solution compounds at the SMD-CPCM-B3LYP/6-311++G(d,p)// B3LYP/6-311++G(d,p) level for Knoevenagel reaction.

				E_{sol}	G _{sol}		G _{sol}		
Compounds	E _e	$E_e + ZPE$	G ₂₉₈	water	water ^a	E _{sol} acetone	acetone		
	water-unassisted Knoevenagel reaction								
H_2O	-76.45853	-76.43724	-76.45489	-76.46963	-76.46599	-76.46727	-76.46363		
H ₂ CO	-114.54185	-114.51534	-114.53700	-114.54403	-114.53918	-114.54929	-114.54444		
2,4 pentanedione	-345.90266	-345.78136	-345.81526	-345.91501	-345.82761	-345.92428	-345.83688		
diketo/keto-enol TS ^b	-345.80887	-345.69340	-345.72302	-345.82160	-345.73575	-345.83166	-345.74581		
cis keto-enol	-345.91120	-345.78882	-345.82155	-345.91872	-345.82907	-345.92850	-345.83885		
W0-1 ^c	-460.45535	-460.30570	-460.35096	-460.46018	-460.35579	-460.47364	-460.36925		
W0-TS1 ^b	-460.41162	-460.26277	-460.29897	-460.42962	-460.31697	-460.44445	-460.33180		
W0-2	-460.46548	-460.31069	-460.34738	-460.48558	-460.36748	-460.49408	-460.37598		
W0-TS2-A ^b	-460.38849	-460.23856	-460.27381	-460.40778	-460.29310	-460.41228	-460.29760		
W0-TS2-B1 ^b	-460.37246	-460.22368	-460.26028	-460.39373	-460.28155	-460.40002	-460.28784		
W0-B	-460.45687	-460.30086	-460.33670	-460.47247	-460.35230	-460.47819	-460.35802		
W0-TS2-B2 ^b	-460.42278	-460.27201	-460.30707	-460.44184	-460.32613	-460.44691	-460.33120		
W0-3•H ₂ O	-460.46030	-460.30977	-460.34978	-460.47526	-460.36474	-460.48483	-460.37431		
W0-3	-383.99161	-383.8653	-383.90008	-384.00156	-383.91003	-384.01270	-383.92117		
	water-assisted Knoevenagel reaction								
2,4 pentanedione •H ₂ O	-422.37272	-422.22673	-422.26451	-422.38730	-422.27909	-422.39443	-422.28622		
diketo/keto-enol•H2O TS ^b	-422.31633	-422.17604	-422.21109	-422.33452	-422.22928	-422.33745	-422.23221		
cis keto-enol•H2O	-422.37988	-422.23337	-422.27193	-422.39287	-422.28492	-422.40113	-422.29318		
W1-1 ^c	-536.92476	-536.74979	-536.79574	-536.94353	-536.81451	-536.95151	-536.82249		
W1-TS1 ^b	-536.88364	-536.71118	-536.75046	-536.90469	-536.77151	-536.91395	-536.78077		
W1-2	-536.93701	-536.75741	-536.79779	-536.95564	-536.81642	-536.96564	-536.82642		
W1-2'	-536.93622	-536.75683	-536.79866	-536.95879	-536.82123	-536.96405	-536.82649		
W1-2''	-536.93325	-536.75446	-536.79711	-536.95959	-536.82345	-536.96522	-536.82908		
W1-TS2-A ^b	-536.88193	-536.70751	-536.74444	-536.91000	-536.77251	-536.90891	-536.77142		
W01w-TS2-A ^b	-536.85816	-536.68407	-536.72521	-536.88297	-536.75001	-536.88589	-536.75297		
W1-TS2-B1 ^b	-536.86969	-536.69665	-536.73466	-536.89820	-536.76317	-536.89816	-536.76313		
W1-B	-536.92979	-536.74881	-536.78799	-536.95113	-536.80933	-536.95243	-536.81063		
W1-TS2-B2 ^b	-536.90108	-536.72546	-536.76314	-536.92945	-536.79151	-536.92724	-536.78930		
W1-3•H ₂ O	-536.93381	-536.75832	-536.80188	-536.94867	-536.81674	-536.95663	-536.82470		
W2-2	-613.41048	-613.20613	-613.25264	-613.43572	-613.27788	-613.43910	-613.28127		
W2-TS2-A ^b	-613.36130	-613.16169	-613.20223	-613.39111	-613.23203	-613.38747	-613.22840		

^a in atomic unit (a.u.); 1 a.u. = 627.5 kcal mol⁻¹. ^bOne imaginary frequency, transition state. ^cOther **W0-1** and **W1-1** conformers have been located and differ only very little in energy (~0.1 kcal mol⁻¹). ${}^{d}G_{sol} = G_{298+}(E_{sol}-E_{e})$.

Table S2 Calculated relative electronic energies $(\Delta E_e)^a$, relative ZPE corrected electronic energies $(\Delta (E_e + ZPVE))^a$ and relative Gibbs free energies $(\Delta G_{298})^a$ for gas phase compounds at the B3LYP/6-311++G(d,p) level and relative solution SCF energies $(\Delta E_{e \text{ solv}})^a$ and relative solution Gibbs free energies $(\Delta G_{sol})^a$ for solution compounds at the SMD-CPCM-B3LYP/6-311++G(d,p)// B3LYP/6-311++G(d,p) level for Knoevenagel reaction (with respect to the separated reactants).

	4.5		10	ΔE_{sol}	ΔG_{sol}	ΔE_{sol}	ΔG_{sol}
Compounds	ΔE_e	$\Delta(E_e + ZPE)$	ΔG_{298}	water	water	acetone	acetone
2,4 pentanedione	0.0	0.0	0.0	0.0	0.0	0.0	0.0
diketo/keto-enol TS [®]	58.9	55.2	57.9	58.6	57.6	58.1	57.1
cis keto-enol	-5.4	-4.7	-3.9	-2.3	-0.9	-2.6	-1.2
	water-unassisted Knoevenagel reaction (energies relatives to the separated reactants)						
cis keto-enol							
$+H_2CO + XH_2O$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W0-1	-1.4	-1.0	4.8	1.6	7.8	2.6	8.8
W0-TS1	26.0	26.0	37.4	20.8	32.2	20.9	32.3
W0-2	-7.8	-4.1	7.0	-14.3	0.5	-10.2	4.6
W0-TS2-A	40.5	41.2	53.2	34.5	47.2	41.1	53.8
W0-TS2-B1	50.6	50.5	61.7	43.3	54.4	48.8	59.9
W0-B	-2.4	2.1	13.7	-6.1	10.0	-0.3	15.9
W0-TS2-B2	19.0	20.2	32.3	13.1	26.4	19.4	32.7
W0-3•H ₂ O	-4.5	-3.5	5.5	-7.8	2.2	-4.4	5.6
W0-3	1.8	1.0	2.2	-5.3	-4.9	-1.4	-0.9
	water-assisted Knoevenagel reaction						
	(energies relatives to the separated reactants)						
2,4 pentanedione •H ₂ O	-7.2 -5.1 3.5 -1.7 9.1 -1.8 9.0						
diketo/keto-enol•H ₂ O TS	28.2	26.7	37.1	31.4	40.4	33.9	42.9
cis keto-enol•H ₂ O	-11.7	-9.3	-1.1	-5.2	5.4	-6.0	4.6
W1-1	-8.3	-5.3	11.1	-7.0	12.4	-4.0	15.3
W1-TS1	17.5	19.0	39.5	17.4	39.4	19.5	41.5
W1-2	-16.0	-10.0	9.8	-14.6	11.2	-12.9	12.9
W1-2'	-15.5	-9.7	9.3	-16.6	8.2	-11.9	12.8
W1-2"	-13,6	-8,2	10,2	-17,1	6,8	-12,7	11,2
W1-TS2-A	18.6	21.3	43.3	14.0	38.7	22.7	47.4
W01w-TS2-A	33,6	36,0	55,4	31,1	52,9	37,2	59,0
W1-TS2-B1	26.3	28.1	49.4	21.4	44.6	29.4	52.6
W1-B	-11.4	-4.6	16.0	-11.8	15.6	-4.6	22.8
W1-TS2-B2	6.6	10.0	31.6	1.8	26.8	11.2	36.2
W1-3•H ₂ O	-13.9	-10.6	7.3	-10.2	11.0	-7.3	13.9
W2-2	-25.3	-17.3	9.8	-21.2	14.0	-16.8	18.4
W2-TS2-A	5.5	10.6	41.5	6.8	42.8	15.6	51.6

^a in kcal mol⁻¹.

Table S3 Calculated total electronic energies $(E_e)^a$, ZPE corrected total electronic energies $(E_e+ZPVE)^a$ and Gibbs free energies $(G_{298})^a$ for gas phase compounds at the B3LYP/6-311++G(d,p) level and solution SCF energies $(E_{sol})^a$ and solution Gibbs free energies $(G_{sol})^{a,c}$ for solution compounds at the SMD-CPCM-B3LYP/6-311++G(d,p)// B3LYP/6-311++G(d,p) level for Diels-Alder reaction.

Compounds	E _e	$E_e + ZPE$	G ₂₉₈	E _{sol}	G _{sol}	E_{solv}	G _{sol}			
				water	water ^c	acetone	acetone ^c			
	water-unassisted Diels-Alder reaction									
styrene	-309.73085	-309.59806	-309.62946	-309.73317	-309.63178	-309.74179	-309.64040			
W0-3	-383.99161	-383.86530	-383.90008	-384.00156	-383.91003	-384.01270	-383.92117			
W0-TS3-α ^b	-693.69466	-693.43277	-693.47757	-693 71075	-693 /19366	-693 72870	-693 51161			
exo				-075.71075	-075.47500	-075.72070	-075.51101			
W0-TS3-β ^b	-693.68150	-693.41954	-693.46334	-693 69802	-693 47986	-693 71351	-693 49535			
exo				-075.07002	-073.47700	-075.71551	-075.47555			
W0-TS3-α ^b	-693.69549	-693.43351	-693.47744	-693 71178	-693 49373	-693 72900	-693 51095			
endo				-075.71170	-075.47575	-075.72700	-075.51075			
W0-TS3-β ^b	-693.68287	-693.42060	-693.46350	603 60757	603 47820	603 71324	603 /0387			
endo				-095.09757	-093.47820	-093.71324	-093.49307			
W0-4-α	-693.75255	-693.48516	-693.52848	-693.76451	-693.54044	-693.78028	-693.55621			
W0-4-β	-693.75294	-693.48541	-693.52847	-693.76740	-693.54293	-693.78276	-693.55829			
	water-assisted Diels-Alder reaction									
W1-3	-460.45930	-460.30910	-460.35019	-460.47526	-460.36615	-460.48483	-460.37572			
W1- TS3- α ^b	-770.16818	-769.88187	-769.93086	770 18501	760 04760	770 20131	760 06300			
endo				-770.16501	-/07.74/09	-770.20131	-107.70399			
W1-4-α	-770.21648	-769.92542	-769.97585	-770.23980	-769.99917	-770.25192	-770.01129			

^a in atomic unit (a.u.); 1 a.u. = 627.5 kcal mol⁻¹. ^bOne imaginary frequency, transition state. ^cG_{sol} = G_{298 +} (E_{sol} - E_e).

Table S4 Calculated relative electronic energies $(\Delta E_e)^a$, relative ZPE corrected electronic energies $(\Delta (E_e + ZPVE))^a$ and relative Gibbs free energies $(\Delta G_{298})^a$ for gas phase compounds at the B3LYP/6-311++G(d,p) level and relative solution SCF energies $(\Delta E_{sol})^a$ and relative solution Gibbs free energies $(\Delta G_{sol})^a$ for solution compounds at the SMD-CPCM-B3LYP/6-311++G(d,p)// B3LYP/6-311++G(d,p) level for Diels-Alder reaction (with respect to the separated reactants).

Commente	٨E			ΔE_{sol}	ΔG_{sol}	ΔE_{solv}	ΔG_{sol}			
Compounds	ΔE_{e}	$\Delta(E_e + ZPE)$	ΔG_{298}	water	water	acetone	acetone			
	water-unassisted Diels-Alder reaction									
		(energies relatives to the separated reactants)								
W0-3	1.8	1.0	2.2	-5.3	-4.9	-1.4	-0.9			
WO-TS3-a exo	19.3	20.2	34.9	9.8	25.3	14.8	30.4			
W0-TS3-β exo	27.5	28.5	43.8	17.7	34.0	24.4	40.6			
W0-TS3-α endo	18.7	19.7	34.9	9.1	25.3	14.6	30.8			
W0-TS3-β^{b} endo	26.7	27.8	43.7	18.0	35.0	24.5	41.5			
W0-4-α	-17.1	-12.7	2.9	-24.0	-4.0	-17.6	2.4			
W0-4-β	-17.3	-12.8	2.9	-25.8	-5.6	-19.1	1.1			
	water-assisted Diels-Alder reaction (energies relatives to the separated reactants)									
W1-3	-3.9	-3.1	5.2	-7.8	1.3	-4.4	4.7			
W1- TS3-α endo	9.9	12.8	35.9	6.8	32.8	11.5	37.5			
W1-4-α	-20.4	-14.6	7.6	-27.5	0.5	-20.3	7.8			

^a in kcal mol⁻¹.

Fig. S1 Selected B3LYP/6-311++G** structural parameters for stationary structures found in the water-unassisted pathway (**W0**) and in water-assisted pathway (**W1**). Bond lengths are given in angströms.

Fig. S2 Selected B3LYP/6-311++G** structural parameters for stationary transition states hetero Diels-Alder structures found in water-unassisted pathway (**W0**). Bond lengths are given in angströms.

Fig. S3 Hückel-type arrangement and AM1 coefficients in HOMO styrene and LUMO hetero-diene.

Fig. S4 Selected B3LYP/6-311++G** structural parameters for selected stationary structures found in water-assisted pathway (**W2**). Bond lengths are given in angströms.

Note on the keto-enol tautomerism of 2,4-pentanedione

The keto-enol tautomerism of 2,4-pentanedione (acetylacetone) has been studied by Alagona and Ghio in both THF and aqueous solutions (ref. 37). They showed that the inclusion of an explicit water molecule in the transition state structure was lowering the activation barrier (~31-35 kcal mol⁻¹ with respect to the intermediate, IEF-PCM-B3LYP/6-31G*). Our results are in very agreement (see below). Thus, based on our NMR experimental findings and both the already published and our theoretical results, we did not discussed on the keto-enol tautomerism of acetylacetone in the main text. Nevertheless, we described here our computed simulations for the acetylacetone tautomerism reaction (SMD-CPCM-B3LYP/6-311++G**, water solution, see Tables S1 and S2).

In the unassisted water mechanism, the computed TS barrier was exceedingly high (57.6 kcal mol⁻¹) due to the presence of a strained four-membered ring but this barrier was lowering by 17.2 kcal mol⁻¹ with respect to the separated reactants when an explicit water molecule was employed to complete the ring of a six-membered transition state ($\Delta G_{water}^{\ddagger}_{enol} = 40.4$ kcal mol⁻¹ with respect to the separated reactants and 31.3 kcal mol⁻¹ with respect to the 2,4-pentanedione•H₂O intermediate).

a) Water-unassisted mechanism

2,4-pentanedione – H_2O

water-assisted TS

B3LYP/6-311++G(d,p) Cartesian coordinates

Symbol, 0, x, y, z

H_2O

O,0,0.0055622165,0.,0.0043655691 H,0,-0.0054004087,0.,0.9663544931 H,0,0.9373935718,0.,-0.2348690323

H₂CO

C,0,-0.0000007046,0.0003584931,-0.0022475933 O,0,0.0000015417,-0.0001098526,1.199750953 H,0,0.9393505384,-0.0001276007,-0.589852194 H,0,-0.9393489465,0.0031213251,-0.5898508684

2,4 pentanedione

C,0,-0.0054419475,0.0061230728,-0.0070212866 C,0,-0.0034517697,0.0003912954,1.5024165096 C,0,1.3746818475,-0.0113261106,2.1804434395 C,0,1.8094210521,-1.4722405362,2.3697655153 O,0,2.4319644472,-2.0470534898,1.5051606463 O,0,-1.0164714056,-0.0247438535,2.1647395917 C,0,1.3840007422,-2.1343901372,3.657793092 H,0,0.3809832321,0.9658945313,-0.3665923298 H,0,-1.0165071527,-0.1429552734,-0.3834092998 H,0,0.6664274971,-0.7688803312,-0.3878776042 H,0,1.2806127009,0.4927584937,3.1430583086 H,0,2.1186481401,0.4829270405,1.5545009695 H,0,1.6039264243,-3.2005321159,3.6243358681 H,0,0.3174685791,-1.9655892328,3.8341550235 H,0,1.9206427862,-1.6762642219,4.4955964391

diketo – ketoenol TS

```
\begin{array}{l} C,0,-0.6109863706,0.2398600688,0.148890264\\ C,0,0.1996081134,0.1338441905,1.381947304\\ C,0,1.6087363808,-0.2036683346,1.5603996025\\ C,0,1.8989935664,-1.6358985831,1.7497107666\\ O,0,1.0359738686,-2.498553384,1.8604181843\\ O,0,-0.3071061925,0.2794742911,2.5343615115\\ C,0,3.3743089116,-2.0039326973,1.8168263006\\ H,0,-0.0634435892,0.7982546285,-0.6142268133\\ H,0,-1.5856410372,0.6895688836,0.3335691333\\ H,0,-0.7413970163,-0.779400483,-0.2353545026\\ H,0,0.8671629581,0.1169582446,2.8741276094\\ H,0,2.3556753401,0.3601015129,1.0059038391\\ H,0,3.504190377,-2.8312161548,2.5157093314\\ H,0,4.0037467353,-1.1619415934,2.1103758231\\ H,0,3.6948650669,-2.3477815246,0.8277950767\\ \end{array}
```

cis-keto-enol

C,0,-0.001082042,-0.0022571514,-0.0008791851 C,0,-0.004427031,-0.0546035133,1.5094741536

 $\begin{array}{l} \text{O}, 0, 1.072517283, -0.1500503859, 2.1281575139\\ \text{C}, 0, -1.2691533269, 0.0205472629, 2.2027912864\\ \text{C}, 0, -1.3210915703, -0.0081497281, 3.5719417705\\ \text{C}, 0, -2.5843108306, 0.0649493263, 4.3667162873\\ \text{O}, 0, -0.2269393411, -0.1068465576, 4.3143684981\\ \text{H}, 0, -0.7122747363, -0.7207005667, -0.4176458298\\ \text{H}, 0, 1.0002325047, -0.2110185857, -0.374962222\\ \text{H}, 0, -0.3092252166, 0.9933647941, -0.3365879589\\ \text{H}, 0, -2.1884592217, 0.1009898038, 1.639182911\\ \text{H}, 0, -2.6788471122, -0.8276361057, 4.9918895387\\ \text{H}, 0, -3.4584487095, 0.1469867949, 3.721765422\\ \text{H}, 0, -2.548146664, 0.92759648, 5.0382578402\\ \text{H}, 0, 0.543996013, -0.1481547359, 3.6738321926\\ \end{array}$

W0-1: *cis*-keto-enol•H₂CO

C,0,0.,0.,0. C,0,0.,0.,1.511081 C,0,1.2585676472,0.,2.2144995107 C,0,1.2883766648,-0.0295065789,3.5852389576 O.0.0.1792296684,-0.0550314911,4.3115069215 O,0,-1.0898501726,-0.017988886,2.1203610028 C,0,2.5433087672,-0.0346925197,4.3967573459 O.0.3.7692453325.0.3911237727.-0.388240721 C,0,4.6767848401,0.6143268244,-1.145785785 H,0,0.9722958503,0.2679724407,-0.4148287228 H,0,-0.7710588359,0.6830002792,-0.3618722713 H.0.-0.2639440477.-1.0040690083.-0.3485396994 H,0,2.1846277513,0.0263436208,1.6583690703 H,0,2.5529176993,0.8291200981,5.0679138796 H.0.3.4277063379,-0.0082357195,3.7612581276 H,0,2.5738994666,-0.9310170895,5.0232627638 H.0.-0.5819996976.-0.0469277048.3.6534923939 H,0,5.7336576264,0.5905994356,-0.8163900307 H,0,4.503159115,0.8551814781,-2.2124489999

W0-TS1 CC coupling H₂CO•2,4-pentanedione transition state

C,0,0.0005909547,0.014407836,0.003527307 C,0.0.0126047239,-0.0021812041,1.501867951 O,0,1.1589296283,-0.008597876,2.0714268669 C,0,-1.1697439507,-0.0834897981,2.2837682801 C,0,-1.342379534,0.8015885592,3.4804171184 C,0,-2.7871148234,1.0886722968,3.8586896864 O,0,-0.4132963306,1.2705146994,4.1008802745 C,0,-0.66539441,-1.7752236196,3.2856678933 O.0.0.5031780929,-1.5775941487,3.7536892932 H,0,-0.9935940867,-0.1776191327,-0.3992734169 H.0.0.7170988907,-0.7115815938,-0.3878167445 H,0,0.3251840913,1.0039660782,-0.3363629055 H.0.-2.083008369.-0.2518707532.1.7198232458 H.0.-2.8165698339,1.5685341668,4.8358155935 H,0,-3.387188968,0.1743740723,3.8726063386 H,0,-3.2341102332,1.7596244699,3.1176961385

H,0,1.0552221285,-0.610175824,2.9847145837 H,0,-0.8072251053,-2.4705843134,2.4434560306 H,0,-1.5215079355,-1.7496265361,3.9745677778

W0-2

C,0,-0.1075401366,0.0648327053,0.0877103742 C,0,-0.1994274656,-0.3722091844,1.5295377403 O,0,0.7389940455,-0.8931890177,2.0972120122 C,0,-1.5391828326,-0.1748468335,2.2562362412 C,0,-2.0959273513,1.2439614914,2.1013555253 C.0.-3.6001519356.1.3852911389.2.0267795876 C,0,-1.4127247553,-0.5089844727,3.7647082112 O,0,-1.120211469,-1.8733358611,3.9888861675 O,0,-1.3549689057,2.2029253108,2.07644618 H.0.-1.0101930966,-0.2059175901,-0.4678010498 H,0,0.7696872309,-0.3830315912,-0.3772864075 H,0,-0.0168747659,1.1543262053,0.0564986228 H,0,-2.2482563302,-0.8898683388,1.8185812851 H,0,-3.8836448337,2.4324683991,2.1233261106 H,0,-4.0931125433,0.7874316058,2.7985733342 H,0,-3.9485789906,1.0040417068,1.0602741781 H.0.-0.2238392988.-2.0163280142.3.6571842061 H.0,-2.3615297589,-0.3105080728,4.267735733 H,0,-0.6503585079,0.1428780941,4.2056831701

W0-TS2-A: transition state H₂O elimination

C,0,-0.2777382781,-0.3376377505,0.2394492403 C,0,0.1789534397,0.287557297,1.5296793097 C,0,1.4798789595,-0.0432778102,2.1492768721 C.0.1.5295768983.0.4175943791.3.5780903178 O,0,1.6807672021,1.916940712,3.2909517302 O,0,-0.5358389805,1.1417781035,2.0833710313 C,0,2.4041251184,-1.0595709051,1.6156642767 O,0,2.3263384461,-1.4800567527,0.4698054162 C.0.3.5194636321,-1.5699882857,2.5238605732 H,0,0.3933791333,-0.0518760858,-0.5736603078 H,0,-1.2918218604,0.0019079478,0.0303246363 H,0,-0.2300148665,-1.4270757501,0.2895882272 H,0,1.9465884736,1.3963437824,2.2228564736 H,0,4.1265383103,-2.2733995254,1.9563117888 H,0,3.114142353,-2.07797101,3.404829022 H,0,4.1576808982,-0.7534900983,2.8760825234 H,0,0.7437427058,2.1550858782,3.0803179956 H,0,2.4134474599,0.1356684998,4.1385018286 H.0.0.6212704843.0.2998996444.4.1663582217

W0-3•H₂O: *αβ*-unsaturated ketone (I)•H₂O complexe

C,0,-1.4369568582,-2.1565529904,0.0155643595 C,0,-1.5907614909,-0.6552743154,0.0134208612 C,0,-0.3665984612,0.2406302697,0.0476584879 C,0,-0.5244158726,1.5009353778,0.4927342154 O,0,-2.71210358,-0.1610915192,0.0237456678

 $\begin{array}{l} C,0,0.9727700464,-0.261491847,-0.4121654651\\ O,0,1.0930965865,-1.3548770126,-0.94443717\\ C,0,2.1915266877,0.6303928802,-0.2306101824\\ H,0,-0.714691916,-2.481473305,0.7704915526\\ H,0,-2.4148391609,-2.6031387748,0.2001057119\\ H,0,-1.0364443634,-2.4902429727,-0.9447874461\\ H,0,0.3135502027,2.1860252293,0.562027443\\ H,0,-1.4990600792,1.8855843922,0.785106496\\ H,0,3.0676113665,0.079670184,-0.5732367333\\ H,0,2.3257507565,0.9188475499,0.8167388656\\ H,0,2.0970622495,1.5501506686,-0.8175449958\\ O,0,-3.6660069239,2.4539182911,0.7334313717\\ H,0,-3.5042061085,1.5990125964,0.298376743\\ H,0,-4.0773290808,2.2029712977,1.5701292173\end{array}$

W0-TS2-B1: tautomerization transition state (pathway B)

C,0,0.502170332,0.49643766,0.4279324875 C,0,-0.327290338,-0.4280633387,1.221144553 O,0,-0.0728052104,-1.6691692323,1.3048791864 C,0,-1.5338027696,-0.171284229,2.0367122396 C,0,-2.6590524932,0.4405933713,1.3228928222 C.0.-3.8912026341.0.8393401718.2.1165982676 C.0.-1.2391594149.0.2100006824.3.4653247746 O,0,-0.7623716561,1.5755777143,3.5162062164 O,0,-2.6363807947,0.5846682501,0.1009674926 H,0,-0.1599247828,0.9473844527,-0.3189648618 H.0.1.3398581537.-0.0080164175.-0.0515959189 H,0,0.8404294213,1.3102495739,1.0767536153 H,0,-1.1163403533,-1.6828206977,1.9196579544 H.0.-4.7039186144,1.0460794928,1.4213183626 H,0,-3.6795229972,1.7420830774,2.6980572809 H,0,-4.1960810576,0.0552922729,2.8149157907 H,0,-0.5905936142,1.8129166999,4.4345500728 H,0,-0.4821523101,-0.4540829605,3.9008826512 H.0.-2.1528691318.0.1084727916.4.0594999542

W0-B: ceto-enol intermediate (pathway B).

 $\begin{array}{l} C,0,0.4604897591,0.4563680251,0.0896724388\\ C,0,1.4846201865,-0.4578040326,0.1035864822\\ C,0,0.7906686856,1.9268417674,0.2137648669\\ C,0,-0.9445944827,0.0163684516,0.0219840093\\ C,0,1.3659719924,-1.9480269715,0.1372463737\\ O,0,2.7716374877,-0.0642667688,0.0929121319\\ C,0,-2.0455716609,1.0722864766,0.0842214057\\ O,0,-1.2702724149,-1.1606691203,-0.0815692506\\ O,0,1.8614715516,2.2730921041,-0.7073251085\\ H,0,1.1253637627,2.1640948917,1.2339446114\\ H,0,-0.0786715646,2.5440216154,-0.0075329857\\ H,0,2.3530836078,-2.3718922804,0.324985824\\ H,0,0.9883792025,-2.3187364526,-0.8192729691\\ H,0,0.6499896187,-2.2770752867,0.8890661688\\ H,0,2.8144004898,0.8755654084,-0.1783379761 \end{array}$

H,0,-3.0044547616,0.5566376416,0.0855461354 H,0,-2.0044852499,1.7389328669,-0.7831133763 H,0,-1.9691012395,1.691725659,0.983154388 H,0,2.1092140297,3.1933810048,-0.56697217

W0-TS2-B2: H₂O elimination transition structure (pathway B).

```
C,0,0.1231602966,-0.1507891275,0.2700909732
C.0.-0.8380365411.0.9045585697.0.139713971
C,0,-0.4415188816,-1.4145605959,0.6053670587
C,0,1.5424322907,0.0135117376,-0.0534966645
C.0.-0.4918795363.2.3604754702.0.1107762423
O,0,-2.0608226493,0.5796431568,-0.0117615698
C,0,2.4196040122,-1.2338971644,-0.1374776193
O,0,2.0520796309,1.1121526835,-0.2465693471
O.O.-1.687222518,-1.7339766152,-0.655640645
H,0,-1.1583995314,-1.4345247675,1.4224782195
H,0,0.1846466612,-2.2960468196,0.5536645013
H,0,-1.4115566186,2.9453616037,0.1112731684
H,0,0.0927084292,2.5758457309,-0.787886676
H.0.0.1504003342.2.6324463562.0.94975404
H,0,-2.0586783815,-0.7160080453,-0.4460521498
H.0.3.4078246424,-0.9277513205,-0.4768940654
H.0.2.0134258587,-1.9719380618,-0.8354152601
H,0,2.5185581997,-1.7136509596,0.8413661982
H,0,-2.3387576981,-2.3710908314,-0.3307543757
```

2,4-pentanedione•H₂O

C,0,-0.0302226999,-0.02596919,0.005671564 C,0,0.0687149924,0.04867732,1.5044012559 C.0.1.4689331063.0.0267689512.2.1116635638 C,0,2.0041873268,-1.4223594411,2.1857065394 O,0,2.1582346173,-2.0714178624,1.1753033926 O,0,-0.9169799514,0.1027674328,2.2177186761 C,0,2.3105253274,-1.9450991617,3.5631934113 O.0.-0.3612363413.-0.3969780345.4.952936578 H,0,0.4065878821,0.877843989,-0.4327206151 H,0,-1.0705258081,-0.1188277909,-0.3025664492 H.0,0.5633183145,-0.8717045075,-0.3541718983 H,0,1.4347539738,0.478138136,3.1025507176 H,0,2.1577475489,0.584170682,1.4705213793 H,0,2.6187888286,-2.988409545,3.5098006283 H,0,1.4385676823,-1.818188426,4.2135401783 H,0,3.1133030561,-1.3440231911,4.0055561548 H,0,-1.0958216432,-0.4132270005,5.572445582 H.0.-0.7439999681.-0.1615169171.4.0892146664

2,4-pentanedione tautomerization TS

C,0,-0.0645689297,0.2537906414,0.2477125406 C,0,0.3296476068,-0.6029224861,1.3732325263 C,0,1.7021967452,-0.736615682,1.809046084 O,0,0.6211873189,1.1820207277,-0.1622789549 C,0,-1.4141016098,-0.0482644996,-0.3867995447

 $\begin{array}{l} C,0,2.8803696356,-0.2172588853,1.0437628329\\ O,0,1.9338679511,-1.2730659973,2.9381270454\\ H,0,-0.1999708949,-0.3202866562,2.7250743887\\ H,0,-2.1776634265,-0.2591131573,0.3671032245\\ H,0,-1.7240405351,0.7922791904,-1.0066903892\\ H,0,-1.3260001558,-0.9392334732,-1.0183808476\\ H,0,2.9292610872,0.8688655965,1.1645528186\\ H,0,3.7905862109,-0.6675845629,1.439751492\\ H,0,2.7774111597,-0.3960392159,-0.0266953037\\ H,0,0.8601756025,-1.0862167039,3.6361965617\\ O,0,-0.1768926311,-0.6477028808,3.8725244685\\ H,0,-0.1026484434,0.1063567227,4.4709356489\\ H,0,-0.2338886689,-1.5333211389,1.4699108 \end{array}$

cis-keto-enol•H₂O

C,0,-0.1034686145,-0.0144421517,-0.0431372954 C,0,-0.059086558,-0.0349967967,1.4632364232 O,0,1.0504249332,-0.0615520073,2.0489817164 C,0,-1.2872656629,0.0056049298,2.2093577892 C.0.-1.2845174572.0.0249170505.3.5823962646 C,0,-2.5189854611,0.0696669,4.4218190962 O.O.-0.1618313826.0.0028026648.4.2835110823 O.0.3.2711145088.-0.3594135418.0.2883407494 H,0,-1.0418126748,-0.416464894,-0.4281403203 H,0,0.7452618893,-0.5627677157,-0.4534354638 H,0,-0.0156944166,1.0246343072,-0.3797513894 H.0.-2.2315111153.0.0236660391.1.6840294438 H,0,-2.5480194232,-0.8035608827,5.0798581328 H,0,-3.419587434,0.0898892683,3.8095543617 H.0.-2.4963783765.0.9561671652.5.0620864326 H,0,0.58647548,-0.0259550452,3.6190750622 H.0.2.6202837898.-0.2455696056.1.0029765889 H,0,4.0661826986,-0.6929235252,0.7126697214

W1-1: H₂CO•H₂O•cis-keto-enol

C,0.0.0344408568,-0.0545517972,0.0691710396 C,0,0.0738654151,-0.0740068917,1.5775433117 C,0,1.3386369176,0.0941590392,2.2444653897 C,0,1.429254798,0.0262311395,3.6107679697 O,0,0.3495065417,-0.1555253698,4.3668038118 O,0,-0.9830077425,-0.2662454183,2.2196609555 C,0,2.7009411583,0.1256174816,4.3833226012 C,0,-1.7508511213,-3.0800897496,2.6906840912 O,0,-0.6965742107,-3.632218706,2.887547823 O.0.0.6792141729.-2.9923502626.5.4955680863 H.0.0.7019835907.0.7075301317.-0.3390862643 H.0,-0.9854371997,0.1177661394,-0.2733150688 H,0,0.3725086034,-1.02514936,-0.3103508346 H.0.2.2364327895.0.2498412329.1.6630883959 H,0,2.6268906145,0.9321375587,5.118264763 H,0,3.5520807316,0.3076328895,3.7284961879 H,0,2.8616213874,-0.806245173,4.9344450339

H,0,-0.4264774536,-0.2107913737,3.728881573 H,0,0.4764626049,-2.0524829332,5.4193905303 H,0,0.3229631478,-3.3756446701,4.6809491695 H,0,-2.2247586912,-3.072418918,1.6929703709 H,0,-2.3019090478,-2.5618578543,3.4954676535

W1-TS1: CC coupling transition state

C.0.-0.0113071407.0.0144511025.-0.01324081 C,0.0024326074,-0.0109387914,1.5076795935 O,0,1.0530867692,-0.0324621109,2.1270521415 C.0.-1.3164346161.0.0204565.2.1627436115 C,0,-1.5165046253,-0.519896912,3.4701286001 C,0,-2.8429012731,-1.1741198692,3.7877784106 O,0,-0.672845092,-0.4965865174,4.4097547683 C.0.-1.3404005609,2.1800983836,2.5921733765 O,0,-0.1604899138,2.5820221148,2.7853760451 0,0,0.895315031,1.3415635888,4.5963884942 H,0,-0.4878650045,-0.8884466858,-0.4078445957 H,0,1.011371982,0.0762745872,-0.3825662577 H,0,-0.584117776,0.8722961483,-0.3799522744 H,0,-2.1636497321,-0.1036528157,1.4943872348 H.0.-3.1280387985.-0.9643749052.4.8201532334 H,0,-2.7243070758,-2.2591030752,3.6931139256 H,0,-3.6354153577,-0.8629633872,3.1057505466 H,0,0.2950530298,0.4146283704,4.45924362 H,0,0.729276135,1.7034247544,5.4748267625 H,0,0.4841079967,2.0022913537,3.821855363 H,0,-2.0254605782,2.0346935922,3.4358291733 H,0,-1.8220772824,2.4087353803,1.6367564266

Supplementary Material (ESI) for PCCP This journal is $\textcircled{\mbox{\scriptsize C}}$ the Owner Societies 2010

W1-2

C,0,-0.0233616962,0.0298533129,-0.0073015701 C.0.-0.0148874628.-0.0130567195.1.5028212943 C,0,1.3758913187,0.0169082636,2.1832634206 C,0,1.262263447,-0.0877004729,3.7084791338 O,0,1.6690039559,-1.0613915627,4.3152432661 O,0,-1.036979037,-0.065497012,2.1479942826 C.0.2.335370023,-1.0152432406,1.539957672 O,0,1.7166872439,-2.2470804009,1.2348311104 C,0,0.6512978602,1.0800782062,4.4398523965 O.0.2.0362697339.-3.7331045627.3.5769110693 H,0,0.6799347946,0.7728335435,-0.3937420156 H,0,-1.0322353609,0.2489473338,-0.3549751013 H,0,0.2859561164,-0.9503110477,-0.3809546842 H.0,1.7781677031,1.0188725996,1.9695474273 H,0,0.7699948049,0.9479237706,5.5144440692 H,0,-0.411200572,1.1272936511,4.1860735053 H,0,1.1066902973,2.0228907345,4.1226681357 H,0,1.9778796031,-2.9110401277,4.0924785166 H,0,2.7918317113,-4.2224463283,3.9139350589 H,0,1.8253504869,-2.867140494,1.979561006 H.0.3.1990248156,-1.1507465691,2.1990350864 H.0.2.7050576773.-0.5998586813.0.5982139535

W1-2'

C,0,-0.0216251975,-0.0122122727,0.0192408251 C,0,-0.0384300272,-0.0067265882,1.5302918841 C,0,1.3244711162,0.012057299,2.2324745311 C,0,1.7689007992,-1.4476266303,2.4890841207 O.O.3.1173244859,-1.5268920159,2.9437682049 O,0,-1.0675496344,-0.0487317511,2.1697897592 C,0,1.3293686211,0.8254743967,3.5330459909 O,0,1.85045533,0.3767012266,4.5364573871 C.0.0.7185065939.2.2036677902.3.5104370547 O.0.4.2639723587.-0.1773531978.0.7650837881 H,0,0.7188065636,-0.7187077563,-0.3655324422 H,0,-1.0124158229,-0.246628598,-0.3676685765 H,0,0.2822983364,0.9789340664,-0.3360297655 H,0,2.0646211748,0.4712641872,1.5640312567 H,0,1.0272451236,2.7579441951,4.3956468069 H,0,-0.3708019919,2.1064211018,3.5030463906 H.0,1.0061610433,2.7457628929,2.6048379302 H,0,1.0932996064,-1.9103721077,3.2148035984 H,0,1.7259680628,-2.0216407696,1.5623238219 H,0,3.1296561422,-1.0945316128,3.810768568 H.0.5.1352872444.-0.3885329989.0.4191204058 H.0,4.1418628314,-0.731419103,1.5565818206

W1-2" (H₂O linked to a carbonyl group)

C,0,0.,0.,0. C,0,0.,0.,1.50936533 O,0,1.0323569262,0.,2.1473201832

C,0,-1.3602217721,-0.044388218,2.2265115366 C,0,-2.3365258518,1.0115979048,1.7143405247 C.0.-3.7930190456.0.6311372947.1.6289206456 C,0,-1.1907971453,0.1278576138,3.7596498522 O,0,-0.4845876209,-0.9473445389,4.341986774 O,0,-1.9320846187,2.1246161197,1.4273055266 H,0,-0.725960321,-0.7165688434,-0.3953262426 H.0.0.9979527732,-0.2339284656,-0.3681401542 H,0,-0.2917406798,0.9925463448,-0.3549891211 H,0,-1.7831665301,-1.0418352057,2.0516885942 H.0.-4.4140155101.1.5071384975.1.4461359658 H,0,-4.1121228061,0.1163086835,2.5398180758 H,0,-3.9215422349,-0.0808115181,0.8052345257 H,0,0.4246406917,-0.8827586348,4.0211858131 H.0,-2.1720581987,0.14891018,4.2385167922 H,0,-0.6960392159,1.0863523088,3.9514752821 H,0,-3.2255716657,3.4483253468,0.8335601398 O,0,-4.073987009,3.8285836797,0.5532684529 H,0,-3.956984907,4.7821841738,0.5794659409

W1-TS2-A: H₂O elimination transition structure (pathway A).

C.0.-0.0073389279.0.0164758299.-0.0045745674 C,0,-0.0027429373,-0.0210923737,1.5248267022 O,0,1.0759721167,-0.0709900733,2.1051525264 C,0,-1.2981157146,-0.0314639414,2.2229267611 C,0,-1.4276659518,0.3109314789,3.641725598 C.0.-0.2460472993,0.3812057976,4.5724654311 C,0,-2.5747261716,0.2966678414,1.4595250618 O,0,-3.7110763681,-0.4743617592,2.0310669253 O.0.-2.5690316908.0.5188854862.4.108435139 O,0,-2.3637653483,-2.4097276029,2.350689316 H,0,-0.4332916266,0.9540654297,-0.3761285458 H,0,1.0225253734,-0.0648127907,-0.3488767749 H,0,-0.5929932037,-0.8019292623,-0.4360871387 H.0,-1.6043424606,-1.5627972546,2.3255075257 H,0,-0.6054810133,0.6476994216,5.5661444243 H,0,0.4867271365,1.1066832733,4.2134579714 H,0,0.2809101554,-0.5750258577,4.6013557096 H,0,-2.8696431178,1.3445461272,1.5475905735 H,0,-2.5383220855,0.0275545392,0.4069254092 H,0,-3.7009256569,-0.1155117046,2.9642562045 H,0,-2.2181955286,-3.049796845,1.6425764319 H,0,-3.2097820262,-1.6355912165,2.1542128629

W01w-TS2-A: H₂O elimination transition structure (pathway A, H₂O on carbonyl group).

C,0,0.994487756,0.7162407906,1.1748881177 C,0,0.1296090526,-0.2846162548,1.8922538669 O,0,0.5435234535,-1.4422335071,2.0632932555 C,0,-1.2327500639,0.0462798725,2.3739609975 C,0,-1.8379476306,1.3779411071,2.2645617223 C,0,-3.0588598432,1.6992769135,3.1142337353 C,0,-1.7193165961,-0.9762685152,3.3621772572

```
O,0,-2.0192561577,-2.0894630387,2.3512638081

O,0,-1.4009960153,2.2231113063,1.4836780938

H,0,0.5330000702,0.9980735278,0.2257709894

H,0,1.9712681205,0.266038213,1.0005580082

H,0,1.0855071594,1.6419664708,1.7462167809

H,0,-1.9040281941,-1.0940169898,1.6530088319

H,0,-3.4131075255,2.7001666864,2.8730798435

H,0,-2.8126087864,1.6557225158,4.1799077639

H,0,-3.8672188003,0.9843168276,2.9326515049

H,0,-1.1172343564,-2.4618953878,2.2033734039

H,0,-2.663972724,-0.7583352969,3.8466556703

H,0,-0.9844679665,-1.3710632692,4.0607931277

H,0,-2.2012925971,3.9150687695,1.3729980837

O,0,-2.7470802219,4.71436085,1.4882113484

H,0,-2.5917856672,5.2512122014,0.7066440777
```

W1-TS2-B1: tautomerization transition structure (pathway B).

C,0,0.0878026649,-0.3471225441,0.0968727418 C,0.0.3278015433,-0.0282372477,1.5167585607 C,0,1.7169013216,-0.0347038856,1.9933459799 0,0,0.9394662,-0.8692677137,-0.613587229 C.0.-1.3059020565,-0.1013959596,-0.4759061149 C.0.2.918010931.0.2257603431.1.1440040829 O,0,1.9362599177,-0.3010018028,3.2152651831 H,0,-0.0926172472,-1.1383582421,2.4292759048 H,0,-1.343013322,-0.5221069986,-1.4795847195 H.0.-2.0809448534.-0.5662184813.0.1404402046 H,0,-1.5379160368,0.9674391511,-0.5350092073 H,0,3.7357294759,0.5642329992,1.7815374065 H.0.3.2073678793.-0.7109653695.0.658694727 H,0,2.706910558,0.9388615564,0.3483325985 H,0,0.9871862801,-0.9904547223,3.5984821295 0,0.0356682259,-1.7031114704,3.4558453013 H.0.-0.6967958654.-1.5020168405.4.0491846559 C.0.-0.5392439563.1.0412452108.2.1868545934 H,0,-1.5985111491,0.8475796551,1.987069218 H,0,-0.400893716,1.0283870833,3.2684293446 O,0,-0.2083606097,2.3872811307,1.8151585493 H,0,-0.3615309842,2.4985703386,0.8711500174

W1-B: dienol •H₂O (pathway B).

 $\begin{array}{l} C,0,0.1524754232,0.9255909149,-0.0860147506\\ C,0,0.1561241818,0.0363827888,1.0946545462\\ C,0,1.3433720568,-0.3175762616,1.7012225701\\ O,0,1.1484884233,1.5149820895,-0.4887156211\\ C,0,-1.1597745168,1.1231389704,-0.8444670014\\ C,0,2.7179720039,0.0169132756,1.2056016678\\ O,0,1.4205518996,-1.0491847572,2.8159528975\\ H,0,-0.4889042663,-1.0802954692,5.4832888291\\ H,0,-0.9847495464,1.8579206433,-1.6284867351\\ H,0,-1.4939342172,0.1869385387,-1.3026390321\\ H,0,-1.9695242727,1.4754712736,-0.1984900461 \end{array}$

 $\begin{array}{l} \text{H}, 0, 3.4328868242, -0.6425096683, 1.6987344637\\ \text{H}, 0, 2.7913621712, -0.0617593921, 0.1229822505\\ \text{H}, 0, 2.9623134803, 1.0542030138, 1.4508775891\\ \text{H}, 0, 0.5898203165, -1.1567322531, 3.3356860739\\ \text{O}, 0, -0.6685464969, -1.2748772772, 4.5590379683\\ \text{H}, 0, -1.2597091759, -0.5762959335, 4.2172848285\\ \text{C}, 0, -1.1490473077, -0.5045277702, 1.6094441839\\ \text{H}, 0, -1.8769567396, -0.598315594, 0.8035897426\\ \text{H}, 0, -1.0313937538, -1.4978503467, 2.0442116648\\ \text{O}, 0, -1.75894203, 0.2888204674, 2.6746584377\\ \text{H}, 0, -1.6238300658, 1.221536455, 2.4759396408\\ \end{array}$

W1-TS2-B2: H₂O elimination transition structure (pathway B).

```
C,0,-0.0107734245,0.0104965713,0.0296853403
C.0.-0.0098526704.-0.0607063772.1.4920793952
C,0,1.1952845806,-0.032035154,2.2658349443
O,0,1.0024185839,0.1793509488,-0.644244826
C,0,-1.3448135683,-0.1364418264,-0.7132340385
C,0,2.559513923,-0.1439639884,1.635180981
O.0.1.1852862701.0.0691014399.3.532910094
H,0,-0.2843766792,1.9730917684,5.2517112338
H.0,-1.1524327656,0.0263995517,-1.7723514493
H.0,-1.7610093852,-1.1406972604,-0.5833489769
H,0,-2.1013783606,0.5795992894,-0.3775210957
H,0,3.2876438522,-0.3157655852,2.4279765997
H,0,2.5990440062,-0.9321725053,0.883369897
H,0,2.8012802189,0.7803495363,1.1039907603
H,0,0.2110334368,0.6781487366,4.3276286938
O,0,-0.6011811787,1.1855166879,4.7992060888
H.0.-1.355966768,1.3252126466,3.7684224693
C,0,-1.2601683547,-0.2339492628,2.2093564769
H,0,-2.0968124154,-0.5963139922,1.6257791716
H,0,-1.1800093404,-0.7718395153,3.1502149645
O.0.-1.8927247511.1.1669105019.2.7791350116
H.0,-1.6181388537,1.8533229572,2.1542574238
```

W1-3•H₂O: αβ-unsaturated ketone (I)•2H₂O complexe

C,0,0.0314613133,0.2884725545,0.1302221081 C,0,0.1407875342,-0.2293451451,1.5372594722 C,0,1.46579833,-0.1515964881,2.2572948235 O,0,1.0234446719,0.67700426,-0.460931619 C,0,-1.3407660221,0.3646605592,-0.4993493975 C,0,2.7004073639,-0.6914083476,1.5916414824 O,0,1.5063468352,0.3207331444,3.3843908915 H,0,-0.1499892793,2.8365186075,4.5752933934 H,0,-1.24124039,0.805067025,-1.4901435086 H,0,-1.7852278818,-0.6309500166,-0.5906625971 H,0,-2.0042485936,0.9735935607,0.1222647009 H,0,3.5199826168,-0.7209491939,2.3086447332 H,0,2.5110708184,-1.6883036027,1.1830321986 H,0,2.950999954,-0.0489401332,0.7440554134 H,0,0.148621732,1.4192839831,4.0358405979

O,0,-0.576913693,2.0326720139,4.2651836286 H,0,-1.9484225731,2.0169669212,3.0041002779 C,0,-0.9079437767,-0.723923444,2.2071533244 H,0,-1.8938462948,-0.7902062287,1.7686660208 H,0,-0.803373968,-1.0664784471,3.2306097041 O,0,-2.6293644769,1.8986410322,2.3139450898 H,0,-3.4158266257,2.3355916542,2.6520364199

W1-3

C,0,-0.024601227,-0.0994718925,-0.030164575 C.0.-0.029907006.0.0289244262.1.4815286395 C,0,1.2733450703,-0.031550429,2.2221259202 C,0,2.4564957984,-0.0550130438,1.5906558513 O,0,-1.0739184029,0.2088271211,2.0821234589 C,0,1.2620138329,-0.0565384499,3.7346009645 O,0,2.0887011824,0.578168974,4.3683654315 C,0,0.2510427374,-0.9204698917,4.4438326687 O,0,4.4303484857,2.1670661773,4.2631844788 O,0,5.5832847092,0.623391787,2.2514355591 H,0,0.4463940735,-1.0332928309,-0.3479834945 H,0,-1.0552341936,-0.0717208283,-0.3797847542 H.0.0.5295569304.0.7237960641.-0.4895132208 H.0.3.5773882267,1.7014537186,4.3342540491 H,0,0.5643095493,-1.0604095619,5.4777583821 H,0,0.134168176,-1.8851365142,3.9431739442 H,0,-0.7231595172,-0.4276119312,4.4085307825 H.0.3.4052007678.-0.0602256006.2.1169225245 H,0,2.5187747478,-0.0710568738,0.5090457367 H,0,6.4330074442,0.2637174003,2.5200416333 H.0,4.2245114519,3.1058544757,4.2481945869 H,0,5.3286299672,1.2494827435,2.9563413703

Styrene H₂CCH(C₆H₅)

C,0.0.1613216392,-0.0071512892,-0.0038332826 C.0.0.101103535.-0.042598552.1.3873505115 C,0,1.2747017044,-0.0237870158,2.1365886848 C,0,2.5069228105,0.0306987591,1.4812250775 C,0,2.5646829529,0.066021804,0.0934859415 C,0,1.3906246276,0.047866256,-0.6781898151 H,0,-0.7574059488,-0.0221157577,-0.5815128802 H,0,-0.8617417029,-0.0848981298,1.8842820778 H.0.1.2332284938.-0.0512694973.3.2195312917 H,0,3.4257603995,0.0455462998,2.0570631532 H,0,3.5314420552,0.1079581156,-0.394432539 C.0.1.3937058536.0.0837246592,-2.1497197357 C.0.2.4532722292,0.1392249891,-2.9627331423 H.0.0.4048284446.0.0615638608.-2.6027458356 H,0,2.3259893193,0.1610997665,-4.0382878435 H.0.3.4740816715.0.1648425311.-2.5980716639

W0-3 αβ-unsaturated ketone (I)

C,0,0.0425510264,0.0465005445,0.054704448

 $\begin{array}{l} C,0,-0.0342194891,0.1616069863,1.3874670313\\ C,0,1.2791950617,0.2484264639,2.1549425849\\ O,0,2.2617565275,0.6916868131,1.5964774496\\ H,0,1.0107527348,0.0507742698,-0.432642144\\ H,0,-0.8341475929,-0.04184799,-0.5743355228\\ C,0,-1.352387076,0.2378338888,2.1010697516\\ O,0,-1.4064573446,0.5721697811,3.2697120366\\ C,0,-2.6239168494,-0.072981538,1.3316246429\\ C,0,1.3484348133,-0.2755342054,3.5686795325\\ H,0,-2.5742394072,-1.0564413438,0.8573742787\\ H,0,-3.4620432664,-0.0412617493,2.025797716\\ H,0,-2.7900759397,0.6678906124,0.5441628738\\ H,0,2.3952685459,-0.3983867728,3.8444879626\\ H,0,0.8621257487,0.4315704789,4.2439747842\\ H,0,0.8111538949,-1.2220062395,3.6715025738 \end{array}$

W0-TS3-a-exo

C.0.0.229664478, 0.504616979, 0.3803647917 C.0.-0.026782377.0.0669036643.1.7031978627 C,0,1.1347078413,0.0591017192,2.5817323762 O,0,2.2057990034,0.5086959061,2.1323615099 C.0.0.5377793664,2.4022044653,0.287513247 C,0,1.8171728239,2.6467593828,0.7952133966 H,0,1.1911603993,0.22126405,-0.0338459467 H,0,-0.5888158362,0.4433119072,-0.3278244337 C,0,-1.3956245665,-0.1774989452,2.1788947263 O,0,-1.6429314876,-0.5842501261,3.3102664115 C,0,-2.560300249,0.0604989828,1.2189206927 C,0,1.0769274992,-0.4079222221,4.0169262814 H,0,-0.297365602,2.7802407232,0.8653511009 H,0,0.3973591147,2.4968651057,-0.7846662245 H,0,1.9139966165,2.925597923,1.8369021834 C,0,3.0548514165,2.5690483685,0.0548837447 C,0,3.1081461073,2.3177432088,-1.3317316247 C,0,4.3264376139,2.2440122518,-1.9934180063 C,0,5.5198404308,2.4242157936,-1.2912734246 C.0.5.4874201712,2.6741169832,0.0815721289 C.0.4.2714271912.2.7416301762.0.7463800854 H.0,4.2454918022,2.9074997849,1.8171159068 H,0,6.4120161216,2.8066654861,0.6314378281 H,0,6.4691129198,2.3692288269,-1.811946583 H,0,4.3494595856,2.0512561464,-3.0599350021 H,0,2.1931085927,2.1915747413,-1.8979136647 H,0,-2.5424280906,1.0666383737,0.7895119949 H.0.-2.5387098861.-0.6536663281.0.3900031887 H,0,-3.4872855719,-0.0757096034,1.7739568989 H,0,2.0767103783,-0.3276120568,4.4445386475 H,0,0.7187642952,-1.4377514872,4.0760943445 H.0.0.3639985378.0.1847198189.4.5944155618

C,0,0.0608266522,0.384212387,0.3748164068 C,0,-0.0125245787,0.025454541,1.7375117406 C.0.1.2127071485.0.196430447.2.4620051044 O,0,2.1728280754,0.7557872803,1.8559741614 C,0,1.5612703495,2.5643197156,0.9420175631 C,0,0.4582188082,2.3519771178,0.1086880432 H,0,0.9760292561,0.1289939275,-0.142605103 H.0.-0.8298775406.0.3223416601.-0.2382060574 C,0,-1.2907899727,-0.3172415136,2.3932242691 O,0,-1.3525548706,-0.6717083553,3.563485331 C.0.-2.5727476541.-0.2504731391.1.5705047985 C,0,1.3998392643,-0.1612616312,3.9135757562 H,0,2.5593463234,2.6636629886,0.5396535383 H,0,1.4251797059,2.9357888471,1.9468982552 H.0.-0.4930333986,2.7095546218.0.4917106451 C,0,0.5894208423,2.4364276433,-1.3735009475 C,0,1.7373571391,1.9948312121,-2.0470073577 C.0.1.8270555059,2.082149254,-3.4336911916 C,0,0.7703034002,2.6065163001,-4.177332744 C,0,-0.3797558388,3.0397472684,-3.5203867383 C,0,-0.4693575756,2.951335667,-2.1330635222 H.0,-1.3678763397,3.2956798959,-1.6304803635 H.0,-1.2086236514,3.4491394869,-4.0871707403 H,0,0.8421104255,2.6741129171,-5.2567242994 H,0,2.7243357235,1.7364357919,-3.9349236125 H,0,2.5668901443,1.5748617635,-1.4877522686 H.0,-2.705991035,0.7283546911,1.1003953929 H,0,-2.5648107496,-1.000370064,0.7738667707 H,0,-3.4131861955,-0.4489022305,2.2338280268 H.0.2.4331626402.0.0455681376.4.1927629803 H,0,1.160175959,-1.2113913785,4.0897112111 H,0,0.7144222648,0.4076647496,4.5472149515

W0-TS3-a-endo

C,0,0.1309428035,0.4502942808,0.2025876771 C,0,-0.0275297905,-0.141571991,1.4827280476 C.0.1.2323632007.-0.4875679234.2.1400121032 O,0,2.2866265213,-0.1390004763,1.5829563224 C,0.0.6651817827,2.2730756361,0.2435655328 C,0,1.7901044538,2.4328351813,1.0623780225 H,0,0.9960371101,0.100013733,-0.3483294755 H,0,-0.7595847862,0.5739167906,-0.4038421599 C,0,-1.3450790721,-0.3016738044,2.1088126917 O,0,-1.509976815,-0.8769791848,3.180802048 C.0.-2.5723575629.0.242382952.1.3771558181 C,0,1.2908516605,-1.2048785279,3.4671693635 H,0,-0.2617385544,2.7262027017,0.5791896881 H,0,0.8381732913,2.3954282327,-0.8209725381 H.0.2.772863804,2.3283674103,0.6171551425 C.0.1.7550299912.2.7071429241.2.4712120875 C,0,0.5478075892,2.7563902523,3.2012056586 C,0,0.5588042921,2.9725489041,4.5754402828

C,0,1.7655565435,3.1614482688,5.2454014514 C,0,2.9727841,3.1248393382,4.5371756812 C,0,2.9685223673,2.8914266182,3.1735719858 H,0,3.9038634265,2.8308338239,2.6284221914 H,0,3.9118576428,3.2659923745,5.0597425866 H,0,1.7701297057,3.3366867849,6.3152347391 H,0,-0.3760556112,2.9965650365,5.1232049265 H,0,-0.4004204696,2.633408502,2.695126 H,0,-2.7817984993,-0.3495770094,0.4806033472 H,0,-3.4267690805,0.1690361002,2.0486183858 H,0,-2.4480097192,1.2826595146,1.0619179708 H,0,2.3380307886,-1.3544315286,3.7311201295 H,0,0.7703300244,-2.1634439058,3.4127310228 H,0,0.7785494998,-0.6323710093,4.2429032692

W0-TS3-β-endo

C,0,-0.943537,-0.521231,-1.615760 C,0,-1.563916,0.270442,-0.626364 C,0,-2.320227,-0.465347,0.344010 0,0,-2.295015,-1.728795,0.275395 C,0,-0.379800,-2.580034,0.011317 C,0, 0.432166, -1.736489, -0.752156 H,0, -1.511151, -1.360817, -1.996226 H,0,-0.310966,-0.036132,-2.349012 C,0,-1.295314, 1.719332, -0.498611 O,0,-1.878034,2.418594,0.320174 C,0,-0.289862,2.362677, -1.444975 C,0,-3.076123,0.162813,1.487271 H,0,-0.873502,-3.422017,-0.451791 H,0,-0.314830,-2.608343,1.089630 H,0,0.715984,-2.131425,-1.724366 C,0,1.459870,-0.867134,-0.124782 C,0,1.274888,-0.283564,1.136265 C,0,2.253351,0.537662,1.691998 C,0,3.435110,0.794596,0.998927 C,0,3.630140,0.223539,-0.258165 C.0.2.650455,-0.594842,-0.813847 H,0,2.812402,-1.036493,-1.792443 H,0,4.546254,0.414072,-0.806187 H,0,4.195344,1.433537,1.433228 H,0,2.088398,0.981966,2.667151 H,0,0.360593,-0.464214,1.690174 H,0,-0.641767,2.313392,-2.480083 H,0,-0.178132,3.407829,-1.160522 H,0,0.683369,1.867326,-1.397499 H,0,-3.554455,-0.629172,2.063930 H,0,-3.823909,0.865182,1.114343 H,0,-2.412446,0.752413,2.124352

W1-3: α,β-unsaturated ketone (I)

 $\begin{array}{c} C, 0, -0.0037813548, -0.0467956009, 0.0725441116\\ C, 0, -0.1178605516, 0.1037760151, 1.3991619115\\ \end{array}$

C,0,1.1648816062,0.1114082852,2.2115571148 O,0,2.1903342817,0.502332243,1.6784639907 H.0.0.9767078988.-0.1222666142.-0.3829490967 H,0,-0.86400274,-0.0908784826,-0.5832749485 C,0,-1.4505767156,0.2881046085,2.0671753588 O,0,-1.5159749714,0.6688682324,3.2202837886 C,0,-2.7137098656,0.0287714622,1.2672656265 C.0.1.1588098108.-0.4173972971.3.6205344743 H,0,-2.7102846244,-0.972295764,0.8285433783 H.0.-3.5694512546.0.1368758175.1.9315144504 H.0.-2.8089172211.0.7497979815.0.4501019249 H,0,2.1827509444,-0.5917472651,3.9489643255 H,0,0.6722556813,0.3112815199,4.2731172442 H.0,0.5695548528,-1.3356203514,3.6914820279 H.0.3.8967644483.0.2288782282.2.5317380054 O,0,4.6229260553,-0.0788209874,3.0992375459 H,0,5.3523416095,0.5257279692,2.938005049

W1-TS3-a-endo

C,0,-1.7410884562,-1.4166460918,-1.0039917129 C,0,-1.7767930843,-0.6194392343,0.1701211509 C.0.-0.771675977,-0.9701481508,1.1662721772 O,0.0538132783,-1.8542504227,0.8630066981 C,0,-0.36619028,-0.9477134921,-2.2584425742 C,0,0.8655318193,-0.8508795842,-1.6034299455 H,0,-1.3968967262,-2.4321235341,-0.8504710858 H.0.-2.5738528708,-1.3309677419,-1.6930283567 C,0,-2.7154220124,0.4980063439,0.3261313084 O,0,-2.8204818051,1.1421674486,1.3658269956 C,0,-3.6276533574,0.8537312634,-0.8473926234 C,0,-0.6758431768,-0.2919297897,2.5093209707 H,0,-0.8022742677,-0.0329568265,-2.6457394044 H,0,-0.4841302974,-1.7966939514,-2.9239921343 H,0,1.4853216191,-1.7377480338,-1.5227029196 C,0,1.3692604797,0.3327046754,-0.9675855695 C,0,0.6265849434,1.5330555725,-0.9045572514 C,0.1.1344544653,2.6456328956,-0.2441117228 C.0.2.3944835745,2.5899917545,0.3500982191 C.0.3.1467234484,1.4110598907,0.2945155666 C,0,2.640194566,0.2925276075,-0.3448798116 H,0,3.1947307711,-0.6388962867,-0.3464759758 H.0.4.1214145882,1.3676686562,0.7666050483 H,0,2.7912717528,3.4619097529,0.8580999449 H,0,0.5502258233,3.5571016684,-0.1953987149 H.0.-0.3413973063.1.6011673926.-1.3828119323 H,0,-4.3815891944,0.0749501764,-0.9997885942 H,0,-4.1366366784,1.7867813874,-0.6095793433 H,0,-3.0804440129,0.969337778,-1.787585883 H.0.0.1602153443,-0.7247275062,3.0591687806 H.0.-1.6050682051.-0.4141674535.3.0699352593 H,0,-0.5410320916,0.7851180879,2.3925635003 H,0,1.75421479,-2.5696042368,0.8281141481

O,0,2.6337605926,-2.8568624268,0.5211479169 H,0,2.8251779437,-3.6678985885,0.9993658709

W0-4-α

C,0,-1.2581153838,0.1061409795,-1.6872735126 C,0,-1.1230953295,-1.2514847593,-1.6882742522 O.0.-0.2026561665.0.9625758894.-1.6595851955 C,0,-2.5369387492,0.8890291202,-1.7168676528 C,0,-2.3132794355,-2.1242304591,-1.6318084966 C,0,0.2627607914,-1.8672448328,-1.7382235621 C,0,1.149486719,0.4690662284,-1.5537027168 C.0.1.276901358,-0.8660219302,-2.2883568618 C,0,1.6129865539,0.4199260307,-0.1041500229 O.O.-3.4631692562,-1.702118354,-1.5833449246 C.0.-2.0812559177.-3.6308835575.-1.6213382369 C,0.0.7376455236,0.5606360055,0.9736685355 C,0,1.2134059401,0.5030433337,2.2843858496 C,0,2.5692383052,0.3106742066,2.5342377207 C.0.3.4528438903.0.1814481385.1.4627199763 C,0,2.976985734,0.2375022374,0.1560104791 H,0,-3.1103528283,0.7290624799,-0.800915884 H,0,-3.1816799797,0.5594313682,-2.5313333903 H,0,-2.3003039017,1.9482300076,-1.8223063116 H,0,0.5786568786,-2.2055239382,-0.743306832 H,0,0.2592001171,-2.7543334429,-2.3757074392 H.0.1.7367802586.1.2309025982.-2.0729264385 H.0.2.2973678911,-1.2425980333,-2.1905510609 H,0,1.0899852691,-0.6920747423,-3.3529193358 H,0,-1.3717436902,-3.9285245444,-0.8439621367 H,0,-1.6730551517,-3.9688813861,-2.5795122957 H,0,-3.0375481274,-4.1232812079,-1.4521748977 H,0,-0.3166716721,0.7258033064,0.7944633734 H,0,0.5192415218,0.612978796,3.1101167624 H.0,2.9371890738,0.26886666666,3.5530861037 H,0,4.5128916629,0.0432339681,1.6443104853 H,0,3.677114101,0.1476308273,-0.6690608286

W1-4-α

 $\begin{array}{l} \text{C}, 0, -0.9175336866, 1.2171180808, -1.7155339635\\ \text{C}, 0, -0.9020669152, -0.1445179557, -1.7387987366\\ \text{O}, 0, 0.2230957811, 1.9726592996, -1.6936950433\\ \text{C}, 0, -2.1221519947, 2.1105230378, -1.7077744835\\ \text{C}, 0, -2.1688101977, -0.9089377856, -1.6832278469\\ \text{C}, 0, 0.4186753689, -0.8873222832, -1.8051935982\\ \text{C}, 0, 0.4186753689, -0.8873222832, -1.8051935982\\ \text{C}, 0, 1.5260553907, 1.3476580735, -1.5748417101\\ \text{C}, 0, 1.5269825203, 0.0214202004, -2.3328473701\\ \text{C}, 0, 1.9550363768, 1.2310740771, -0.1185954223\\ \text{O}, 0, -3.2753109385, -0.383907972, -1.667632522\\ \text{C}, 0, -2.0697375161, -2.4282415982, -1.6349887147\\ \text{C}, 0, 1.0949387627, 1.5007870218, 0.9466753519\\ \text{C}, 0, 1.5402693051, 1.3803384002, 2.2637755613\\ \text{C}, 0, 2.8510215415, 0.9964908531, 2.5320974456\\ \end{array}$

C,0,3.7207412215,0.7370840537,1.4728165222 C,0,3.2752993464,0.8544407482,0.1596241254 H,0,-2.7442321906,1.9114724641,-0.8331388272 H,0,-2.7582897151,1.9156890308,-2.5721803086 H,0,-1.8054711798,3.1536760896,-1.7024304229 H,0,0.6965928882,-1.2753095603,-0.8175096552 H,0,0.3304086996,-1.756154973,-2.4617101089 H.0.2.189847644,2.0591629306,-2.0727743425 H,0,2.5052763487,-0.4540267985,-2.2370481188 H,0,1.3663278128,0.2304488546,-3.3954481025 H.O.-1.3917132645.-2.76715272.-0.8465083354 H,0,-1.6888257493,-2.8233693158,-2.5822704302 H,0,-3.0660155877,-2.8313999006,-1.4606943504 H,0,0.0782153217,1.8168874374,0.754443949 H.0.0.858833726.1.5945268862.3.0794958804 H,0,3.1961883641,0.9082283391,3.5559260515 H,0,4.7478988102,0.4500241357,1.6684973541 H,0,3.9677061991,0.6622452973,-0.6542743426 O,0.0.4441357754,4.9032190539,-2.0415042571 H,0,0.2635039026,5.0614083756,-2.9728335778 H,0,0.3721128286,3.9447301214,-1.9283476497

W0-4-β

C,0,-2.3820748575,1.1179103903,-0.0362627895 C,0,-2.3276319837,-0.2435276086,0.0448729959 O,0,-1.2721919799,1.89820131,-0.0395727276 C.0.-3.604996776,1.9761265705,-0.1508857265 C,0,-3.5709012144,-1.0382836159,0.1396973208 C,0,-0.9897343954,-0.9659439087,0.0230646897 C.0.-0.0077920009.1.295925964.0.275824625 C,0,0.1540565384,-0.0469675945,-0.4348205266 C,0,1.5365572943,-0.6326210363,-0.2228942468 O,0,-4.6854332624,-0.5405966799,0.2483592638 C,0,-3.4424817891,-2.5567497046,0.1129401419 C,0,2.4114712242,-0.7859092391,-1.3040251556 C,0,3.690624747,-1.3105834279,-1.1258205575 C.0.4.1201692482,-1.6886049784,0.1442882169 C,0,3.2611398179,-1.5384399978,1.2318342573 C.0.1.9822967967.-1.0166183561.1.0487650405 H,0,-4.1128802882,2.0461837531,0.8148737832 H,0,-4.3291925327,1.5532109582,-0.8444686279 H,0,-3.3020950342,2.9754996334,-0.466500855 H,0,-0.7557075934,-1.3768868928,1.0126606405 H,0,-1.0365849253,-1.8242348805,-0.652508881 H,0,0.7417199721,2.0215451841,-0.0393282107 H,0,0.0552091762,1.1743036493,1.36322845 H.0.0.028809663.0.1465856059.-1.5058220841 H,0,-2.7472803115,-2.91903789,0.8757747076 H.0.-3.066608985,-2.9011117105,-0.8559368129 H.0.-4.4278730994.-2.9868018191.0.28481162 H,0,2.0859794547,-0.4935238464,-2.29738904 H,0,4.3497218859,-1.4239203284,-1.9793849783

H,0,5.1141703403,-2.0972767053,0.2861312626 H,0,3.586081979,-1.8289642283,2.2247697903 H,0,1.3284118911,-0.9125375697,1.9082114139

W2-2

C,0,-0.2599039216,0.2792977989,0.0331626749 C.0.-0.053663481.-0.0315932128.1.4965664362 O.0.09710390652,-0.5223671072,1.9200608455 C,0,-1.20055183,0.3407979602,2.4461920833 C,0,-1.3738648872,-0.656702466,3.5962572035 C.0.-1.4344217236.-2.1228723236.3.2538682306 C,0,-0.9545525035,1.7713882589,2.9773862273 O,0,-2.0379591041,2.2491855433,3.7750124502 O,0,-1.5073383428,-0.2645849698,4.7418032666 O.0.-4.0566789972.0.5126429569.0.7611135248 H,0,-0.6057002672,1.3081311537,-0.1025128194 H,0,0.6630679992,0.1131662476,-0.5207104718 H,0,-1.0542924705,-0.3633336189,-0.3606394499 H,0,-2.1399570813,0.3328093886,1.876682871 H.0,-1.8064227029,-2.6858721758,4.1087543408 H,0,-0.4298145544,-2.4705830213,2.997379409 H.0.-2.0750751643.-2.2886126639.2.3828452666 H.0.-0.0274521066,1.7905309905,3.5586947787 H,0,-0.8539224078,2.4723298635,2.1471973614 H,0,-2.0856606173,1.6456341148,4.5335762359 H.0.-4.5193470898.0.5434495989.-0.0806448715 H.0.-4.3135604814.1.3276685883.1.2365479556 H,0,-3.565639602,2.6941542744,2.9126435769 O,0,-4.3266423069,2.8096169754,2.3063896955 H.0.-5.0541159592.3.1388636858.2.8412936565

W2-TS2-A: H₂O elimination transition state (pathway A, 2 water molecules) C,0,0.0012088872,0.0029904716,-0.0005562236 C,0,0.0005066469,0.0009361209,1.5308031378 O.0.1.0836876294.0.0016677057.2.1034531864 C,0,-1.2986403029,-0.0510460061,2.2386583721 C,0,-1.3976634516,0.2367810005,3.6782744568 C,0,-0.1843427979,0.2306774176,4.5765670216 C,0,-2.5649754687,0.2641471218,1.4617715377 O,0,-3.5494836958,-0.8653590312,1.4314922026 O,0,-2.5043501497,0.4557718657,4.2018063095 O,0,-2.0491919505,-2.5398897084,2.1910797538 O,0,-5.0206704795,-0.0344142916,3.4403935482 H,0,-0.2846076718,0.9885179258,-0.3827225283 H.0,1.0154597175,-0.2126421197,-0.3334966221 H.0.-0.6882394137.-0.7270787531.-0.4341513275 H.0,-1.4456295546,-1.5624301735,2.3023707713 H,0,0.3650715338,-0.7089756951,4.4929171495 H.0.-0.517868538,0.3906627362,5.6016514855 H.0.0.5208600079.1.0071777173.4.273458509 H,0,-3.10315,1.1023996944,1.9011825619 H,0,-2.3707385824,0.479351893,0.4164936194

 $\begin{array}{l} \text{H,0,-4.2528012517,-0.6717630572,2.111397341} \\ \text{H,0,-1.63738183,-3.1364772341,1.5533274441} \\ \text{H,0,-2.9115265916,-1.9023284045,1.7529857661} \\ \text{H,0,-5.558227267,-0.5115331258,4.0786550888} \\ \text{H,0,-4.177439001,0.216367281,3.888748211} \end{array}$

Complete reference 30 of the manuscript: Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Complete reference 31 of the manuscript: Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

3) Copy of the ¹H and ¹³NMR spectra of the dihydropyran derivative (*3-Acyl-2-methyl-6-phenyl-5,6-dihydropyran*)

