Supplementary Information

Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations.

Marina Radoul,[§] Mahesh Sundararajan,[#] Alexey Potapov,[§] Christoph Riplinger, [#] Frank Neese^{#*} and Daniella Goldfarb.^{§*}

[§] Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.[#] Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr 12, Bonn - 53115, Germany.

Table S1. Computed spin populations of rhombic models (\mathbf{R}_{M1} and \mathbf{R}_{M2}) using PBE functional.

		F	R _{M1}		R _{M2}				
	Gas	COSMO	NOSOL	PROTEIN	Gas	COSMO	NOSOL	PROTEIN	
Fe	0.662	0.665	0.661	0.702	0.694	0.697	0.694	0.733	
N _{NO}	0.184	0.183	0.186	0.165	0.172	0.172	0.173	0.153	
O _{NO}	0.133	0.129	0.133	0.118	0.119	0.115	0.119	0.103	
^{ε2} N _{His93}	0.026	0.027	0.025	0.022	0.028	0.029	0.026	0.023	
^{ε2} N _{His64}	-0.001	-0.001	0.000	-0.001	-0.001	-0.001	-0.001	-0.001	
ε2H _{His64}	0.021	0.020	0.019	0.020	0.021	0.019	0.019	0.020	

Table S2. Computed g-tensor of rhombic models (\mathbf{R}_{M1} and \mathbf{R}_{M2}) using PBE functional.

]	R _{M1}			Exp			
	Gas	COSMO	NOSOL	PROTEIN	Gas	COSMO	NOSOL	PROTEIN	
g 1	1.984	1.983	1.984	1.984	1.982	1.981	1.983	1.983	1.987
g ₂	2.001	2.001	2.001	2.003	2.000	2.000	2.000	2.001	2.008
g ₃	2.028	2.027	2.028	2.030	2.039	2.039	2.039	2.042	2.075
g _{iso}	2.004	2.004	2.004	2.006	2.007	2.007	2.007	2.009	

				R _{M1}			Exp			
		Gas	COSMO	NOSOL	PROTEIN	Gas	COSMO	NOSOL	PROTEIN	
N _{NO}	A_1	21.9	21.9	23.6	21.6	19.8	19.8	21.4	19.1	
	A_2	26.2	26.4	27.8	26.8	24.5	24.6	25.9	24.8	
	A ₃	59.1	59.8	60.7	58.1	55.1	55.7	56.5	53.7	
	a _{iso}	35.7	36.1	37.4	35.5	33.1	33.4	34.6	32.5	38.0 ^a
ε2N _{His93}	A_1	17.0	17.0	17.0	16.0	18.0	18.0	17.9	17.0	
	A ₂	17.3	17.3	17.2	16.3	18.4	18.3	18.3	17.3	
	A ₃	21.6	21.7	21.5	20.2	23.0	23.1	22.7	21.5	
	a _{iso}	18.6	18.7	18.6	17.5	19.8	19.8	19.6	18.6	18.6
^{ε2} N _{His64}	A ₁	4.3	4.1	4.0	4.1	3.8	3.6	3.5	3.6	
	A_2	4.4	4.1	4.0	4.2	3.9	3.6	3.5	3.7	
	A_3	6.0	5.7	5.6	5.7	5.3	5.0	5.0	5.1	
	a _{iso}	4.9	4.6	4.5	4.7	4.3	4.1	4.0	4.1	
^A N _{heme}	a _{iso}	5.3	5.2	5.5	4.9	1.0	0.9	1.1	0.6	
^B N _{heme}	a _{iso}	-2.5	-2.5	-2.4	-2.6	-3.8	-3.7	-3.8	-3.8	
^C N _{heme}	a _{iso}	-3.8	-3.8	-3.8	-3.9	-2.4	-2.4	-2.3	-2.7	
^D N _{heme}	a _{iso}	2.1	1.9	2.1	1.6	4.5	4.4	4.6	4.2	3.8
$^{\delta 1}N_{His93}$	A_1	1.3	1.2	1.1	1.1	1.3	1.1	1.1	1.1	
	A_2	1.4	1.2	1.2	1.2	1.3	1.2	1.1	1.1	
	A ₃	1.7	1.6	1.5	1.5	1.7	1.6	1.5	1.5	

Table S3. Computed ¹⁴N HFC's (in MHz) of rhombic models (\mathbf{R}_{M1} and \mathbf{R}_{M2}) using PBE functional. Experimental values from this work are listed as well.

^aR. LoBrutto, Y. H. Wei, R. Mascarenhas, C. P. Scholes and T. E. King, J. Biol. Chem., 1983, 258, 7437.

				R _{M1}			Exp			
		Gas	COSM	NOSOL	PROTEIN	Gas	COSM	NOSOL	PROTEIN	
			0				0			
N _{NO}	e ² qQ/h	-2.269	-2.326	2.224	-2.319	-2.218	-2.270	-2.180	-2.274	
	η	0.928	0.889	0.956	0.862	0.943	0.910	0.969	0.876	
ε2N _{His93}	e ² Qq/h	-2.473	-2.415	-2.615	-2.701	-2.478	-2.422	-2.620	-2.702	2.6±0.1
	η	0.515	0.540	0.471	0.428	0.510	0.534	0.466	0.425	0±0.1
ε2N _{His64}	e ² Qq/h	-2.406	-2.435	-2.462	-2.427	-2.447	-2.465	-2.501	-2.467	
	η	0.230	0.184	0.168	0.226	0.204	0.166	0.142	0.203	
^{ε2} H _{His64}	e ² Qq/h	0.219	0.220	0.220	0.219	0.219	0.219	0.220	0.218	
	η	0.122	0.124	0.122	0.120	0.122	0.123	0.121	0.121	

Table S4. Calculated nuclear quadruple coupling constants (e^2Qq/h) in MHz, and asymmetry parameter η using PBE functional.

Table S5. Computed ¹H hyperfine couplings (in MHz) of \mathbf{R}_{M2} model at the QM/MM level using PBE functional compared with experimental results reported in this work for ^{ϵ^2}H_{His64} and those reported in ref. 1 for other protons.

		^{ε2} H _{His64}	^{ɛ1} H _{His64}	δ ¹ H _{His93}	^{EI} H _{His93}	Cy2IHVal68	Cy2IIHVal68	Cy2III H _{Val68}	A,(C)H _{heme}	^{B,(D)} H _{heme}
R _{M2}	A_1	-4.9	-0.7	0.6	-0.9	-1.6	-1.3	-0.9	-0.7 (-0.6)	-0.5 (-0.6)
	A_2	-6.0	-0.9	0.8	-1.2	-1.8	-1.8	-0.9	-0.8 (-0.8)	-0.6 (-0.7)
	A ₃	11.9	1.5	2.3	3.9	3.3	3.6	1.6	1.3 (1.5)	1.4 (1.5)
Exp	A_1	-5.1	0.68	-0.9	-4.4	1.47		-0.35	1.9	-0.71
		$(1.3)^{a}$								
	A_2	-6.0 (2.6)	-0.38	-0.25	1.13	-0.73		0.7	-0.6	-0.71
	A ₃	8.0 (-4.2)	-0.36	-2.07	2.0	1.47		0.7	-0.95	1.5

^a the values in parenthesis are from ref 1.

1. Flores, M.; Wajnberg, E.; Bemski, G. Biophysical J. 2000, 78, 2107-2115.

Figure S1. W-band HYSCORE experimental (a), simulated using the R_{M1} parameters (b) and simulated using 'manual' fit (c) spectra of MbNO pH 7.0. The g-values corresponding to the field at which the measurements were carried out are given on the Figure.