Bis(Tetrathiafulvalenes) with Aromatic Bridges: Electron Delocalization in the Oxidized Species through EPR and Theoretical Studies

François Riobé,^a Narcis Avarvari,^{*a} Philippe Grosshans,^b Helena Sidorenkova,^b Théo Berclaz,^b and Michel Geoffroy,^{*b}

Supplementary Material

Fig. S1. EPR spectrum simulated for (Pyr-TTF)⁺ by using the coupling constants obtained from DFT calculations.

spectrum a spectrum b has been simulated with an expansion of the y-scale in order to show the satellite lines due to ³³S.

Fig. S2. EPR spectrum simulated for (Bz-TTF)^{.+} by using the coupling constants obtained from DFT calculations

Fig. S3. EPR spectrum simulated for (**TTF-Pyr-TTF**)^{.+} by using the coupling constants obtained from DFT calculations

Fig. S4. Experimental EPR spectra obtained after oxidation of (TTF-Bz-TTF)_{meta}.

Fig. S4a: Oxidation of TTF-Bz-TTF with 20 equivalents of ferricinium PF_6 Fig. S4b: Oxidation of TTF-Bz-TTF with 0.01 equivalents of ferricinium PF_6 Fig. S4c: variation of the hyperfine pattern with the amount of ferricinium PF_6 (in equivalents). a: 20 equiv., b: 2 equiv., c: 1.5 equiv., d: 1 equiv., e: 0.5 equiv., f: 0.1 equiv.

Fig. S5. EPR spectrum simulated for (**TTF-Bz-TTF**)_{meta}.⁺ by using the coupling constants obtained from DFT calculations.

Fig. S6. EPR spectrum simulated for (TTF-Bz-TTF)_{para}^{.+}.

Simulation was performed by using the following coupling constants: -0.90 G (with two protons), -0.65G (with two protons), -0.63 (with two protons). The DFT coupling constants are very slightly different: -1.51 (for H17, H17'), -0.64 (for H18, H18'), -0.59 (for H19,H19'), for H1, H1', H3, H3' coupling are less than 0.09G).

Table S1a. Solvent and conformation dependences of the ¹H and ¹⁴N coupling constants (Pyr-TTF).⁺

	H17	H18	H19	H-C3	H-C4	H-C5	H-C6	N1
(Pyr-TTF) ^{.+}								
conformation A								
$\xi = 0^{\circ}, \theta = 180^{\circ}$								
No solvent	-1.626	-1.212	-1.237	-0.394	0.130	-0.465	0.163	0.188
THF	-1.412	-1.309	-1.338	-0.355	0.122	-0.450	0.115	0.120
CH ₂ Cl ₂	-1.390	-1.313	-1.342	-0.355	0.121	-0.443	0.115	0.120
H ₂ O	-1.628	-1.337	-1.364	-0.348	0.115	-0.405	0.115	0.117
conformation B								
ξ = 180°, θ =180°								
No solvent	-1.578	-1.263	-1.263	-0.098	0.003	-0.281	-0.211	-0.141
THF	-1.273	-1.345	-1.351	-0.199	0.011	-0.276	-0.076	-0.046
CH ₂ Cl ₂	-1.249	-1.347	-1.355	-0.198	0.008	-0.274	-0.071	-0.043
H ₂ O	-1.126	-1.356	-1.377	-0.194	0.003	-0.266	-0.05	-0.030

 $\theta = C7C10C9C11$

Table S1b. Solvent and conformation dependences of the ¹H coupling constants for(Bz-TTF).+

	H17	H18	H19	H-C3	H-C4	H-C5	H-C6	H-C1
(Bz-TTF) ^{.+}								
conformation A								
$\xi =$ -33.1°, θ =-177.5 $^{\circ}$								
No solvent	-2.003	-1.227	-1.233	-0.106	0.130	-0.338	0.061	-0.140
THF	-1.726	-1.306	-1.296	-0.124	0.124	-0.315	0.134	-0.200
CH ₂ Cl ₂	-1.712	-1.308	-1.298	-0.130	0.128	-0.310	0-133	-0.200
H ₂ O	-1.623	-1.312	-1.310	-0.155	0.135	-0.319	0.126	-0.206
conformation B								
ξ = 146.5 °, θ =-177.5 °								
No solvent	-2.003	-1.227	-1.233	-0.140	0.061	-0.338	0.130	-0.106
THF	-1.726	-1.306	-1.296	-0.200	0.134	-0.315	0.124	-0.124
CH ₂ Cl ₂	-1.712	-1.308	-1.298	-0.200	0-133	-0.310	0.128	-0.130
H ₂ O	-1.623	-1.312	-1.310	-0.206	0.126	-0.319	0.135	-0.155

Table S2. Equilibrium conformations calculated for neutral TTF-Pyr-TTF

 $\text{Min 1 C2 AA (C2 sym)} \quad \text{E= -3893.38347 h}, \quad \xi_1 = +7.8^{\circ} \quad \theta_1 = +165.6^{\circ}, \quad \xi_2 = +7.8^{\circ} \quad \theta_2 = +165.6^{\circ}$

 $\text{Min 1 CS AA(Cs sym) E= -3893.38341 h, } \\ \xi_1 = -4.04^{\circ} \\ \theta_1 = -165.9^{\circ}, \\ \xi_2 = +4.04^{\circ} \\ \theta_2 = 165.9^{\circ} \\ \theta_3 = -165.9^{\circ}, \\ \xi_4 = -4.04^{\circ} \\ \theta_4 = -165.9^{\circ}, \\ \xi_5 = -4.04^{\circ} \\ \theta_5 = -165.9^{\circ}, \\ \xi_5 = -165.9^{\circ}, \\$

 $\textbf{Min 2 C2 BB(C2 sym) E= -3893.38394 h, } \xi_1 = 176.8^{\circ} \theta_1 = 169.3^{\circ}, \ \xi_2 = 176.8^{\circ} \ \theta_2 = 169.3^{\circ}$

Min 2 Cs **BB**(Cs sym) E= -893.38391 h, $\xi_1 = 176.1^{\circ} \theta_1 = 168.8^{\circ}, \xi_2 = -176.1^{\circ} \theta_2 = -168.8^{\circ}$

Min 3 C1a AB (conform a) E= -893.38467 h $\xi_1 = -3.4^\circ, \theta_1 = 166.6^\circ, \xi_2 = 177.7^\circ, \theta_2 = 170.8^\circ$

Min 3 C1b AB (conform b) E= -893.38471 h, $\xi_1 = 4.6^{\circ} \theta_1 = 166.1^{\circ} \xi_2 = 178.1^{\circ} \theta_2 = 169.7^{\circ}$

Table S3. Conformation dependence of the isotropic coupling constants^a in (**TTF-Pyr-TTF**)⁺⁺ (the calculations take the solvent effects (THF) into account)

	H17	H18	H19	H17'	H18'	H19'	H-C3	H-C3'	H-C4	N1
(TTF-Pyr-TTF) ⁺										
Conformation AA $\xi_1 = 0^\circ, \theta_1 = 180^\circ$ $\xi_2 = 0^\circ, \theta_2 = 180^\circ$ E= -3893.17543 a.u. ($\Delta E = 3.5 \text{ kcal. mol}^{-1}$)	-0.74	-0.67	-0.69	-0.73	-0.67	-0.69	0.0	0.0	0.10	0.28
Conformation BB $ξ_1 = 180^\circ, θ_1 = 180^\circ$ $ξ_2 = 180^\circ, θ_2 = 180^\circ$ E=-3893.18107 a.u. (ΔE = 0.0 kcal. mol ⁻¹⁾	-1.0	-0.66	-0.63	-1.0	-0.66	-0.63	-0.62	-0.62	0.25	-0.22
Conformation AB $\xi_1 = 0^{\circ} \theta_1 = 180^{\circ}$ $\xi_2 = 180^{\circ} \theta_2 = 180^{\circ}$ E= -3893.17806 a.u. $(\Delta E = 1.89 \text{ kcal. mol}^{-1})$	-0.13	-0.53	-0.56	-0.79	-0.89	-0.85	0.15	-0.02	0.13	0.21
$\begin{array}{c c} \hline Conformation BA\\ \xi_l = 180^\circ, & \theta_l = 180^\circ\\ \xi_2 = & 0^\circ, & \theta_2 = 180^\circ \end{array}$	-0.79	-0.89	-0.85	-0.13	-0.53	-0.56	0.13	-0.02	0.15	0.21

Table S4. Conformations of neutral $(TTF-Bz-TTF)_{meta}$

$\begin{array}{rllllllllllllllllllllllllllllllllllll$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
AB sym C1 (min3, a) $E = -3877.34021$ h $\Delta E = 0.04$ kcal.mol ⁻¹ $\xi_{1} = +34.4^{\circ}$ $\theta_{1} = +164.0^{\circ}$ $\xi_{2} = -148.9^{\circ}$ $\theta_{2} = +163.9^{\circ}$	Land and a second secon
$ \begin{array}{c cccc} AB & sym C2 & (min3,b) \\ E = -3877.34027 \ h & \Delta E = 0.0 \ kcal.mol^{-1} \\ \xi_1 = -31.37^\circ & \theta_1 = -164.0^\circ \\ \xi_2 = -148.6^\circ & \theta_2 = +163.3^\circ \end{array} $	A Constant of the second

Table S5. Optimized conformations for (TTF-Bz-TTF).+

AA Min1 Cs E= -3877.13219 a.u. $(\Delta E = 0.55 \text{ kcal. mol}^{-1})$		
Min1 C2 E=-3877.13250 a.u. $(\Delta E = 0.36 \text{ kcal. mol}^{-1})$	Min1 Cs $\xi_1 = -33.4^\circ, \ \theta_1 = -176.7^\circ$ $\xi_2 = 33.4^\circ, \ \theta_2 = 176.7^\circ$	Min1 C2 $\xi_1 = -33.5^\circ, \theta_1 = -176.7^\circ$ $\xi_2 = -33.5^\circ, \theta_2 = -176.7^\circ$
BB Min2 Cs E= -3877.13307 a.u. $(\Delta E = 0 \text{ kcal. mol}^{-1})$		
Min2 C2 E=-3877.13292 a.u. $(\Delta E = 0.09 \text{ kcal. mol}^{-1})$	Min2 Cs $\xi_1 = 148.7^\circ, \ \theta_1 = -176.9^\circ$ $\xi_2 = -148.7^\circ, \ \theta_2 = 176.9^\circ$	Min2 C2 $\xi_1 = 148.8^\circ, \theta_1 = -176.9^\circ$ $\xi_2 = 148.8^\circ, \theta_2 = -176.9^\circ$
AB Min3 C1 E=-3877.13272 a.u. $(\Delta E = 0.22 \text{ kcal. mol}^{-1})$		
Min3 asym E=-3877.13253a.u $(\Delta E = 0.34 \text{ kcal. mol}^{-1})$	$ \begin{array}{l} \textbf{Min3 C1} \\ \xi_1 = -39.5^\circ, \ \theta_1 = -177.0^\circ \\ \xi_2 = -148.1^\circ, \ \theta_2 = 176.3^\circ \end{array} $	

Table S6. Isotropic coupling constants^a for the various conformations of (TTF-Bz-TTF)^{.+} meta

(TTF-Bz-TTF) ^{.+}	H17	H18	H19	H17'	H18'	H19'	H-C3	H-C3'	H-C4	H-C1
Min1 (Cs) AA	-0.82	-0.68	-0.68	-0.79	-0.68	-0.68	-0.28	-0.02	-0.03	0.19
$\xi_1 = -33.4^\circ, \ \theta_1 = -176.7^\circ$ $\xi_2 = 33.4^\circ, \ \theta_2 = 176.7^\circ$										
Min1 pseudo C2 AA	-0.81	-0.68	-0.67	-0.80	-0.68	-0.67	-0.54	0.19	0.19	-0.05
$\xi_1 = -33.5^\circ, \theta_1 = -176.7^\circ$										
$\xi_2 = -33.5^\circ, \theta_2 = -176.7^\circ$										
Min 2 pseudo Cs BB	-0.74	-0.70	-0.69	-0.76	-0.69	-0.68	-0.34	-0.03	-0.03	0.11
$\xi_1 = 148.7^\circ, \theta_1 = -176.9^\circ$										
$\xi_2 = -148.7^\circ, \theta_2 = 176.9^\circ$										
Min2 (C2) BB	-0.77	-0.70	-0.68	-0.77	-0.70	-0.68	-0.38	0.08	0.08	0.05
$\xi_1 = 148.8^\circ, \theta_1 = -176.9^\circ$										
$\xi_2 = 148.8^\circ, \theta_2 = -176.9^\circ$										
Min3 C1 (AB)	-0.81	-0.89	-0.89	-0.61	-0.49	-0.48	-0.35	0.07	0.0	0.15
$\xi_1 = -39.5^\circ, \ \theta_1 = -177.0^\circ$										
$\xi_2 = -148.1^\circ, \theta_2 = 176.3^\circ$										
Min3 C1 (BA)	-0.61	-0.49	-0.48	-0.81	-0.89	-0.89	-0.35	0.0	0.07	0.15
$\xi_1 = \circ, \theta_1 = \circ$										
$\xi_2 = \circ, \theta_2 = \circ$										
Min3 asym AB	-0.79	-0.71	-0.71	-0.84	-0.65	-0.64	-0.24	-0.02	-0.06	0.08
$\xi_1 = 34.39^{\circ}, \theta_1 = 177.5^{\circ}$										
$\xi_2 = -141.6^\circ, \theta_2 = 176.8^\circ$										
Min3 asym BA	-0.84	-0.65	-0.64	-0.79	-0.71	-0.71	-0.24	-0.06	-0.02	0.08
$\xi_1 = 141.6^{\circ}, \theta_1 = 176.8^{\circ}$										
$\xi_2 = 34.3^{\circ}, \theta_2 = 177.6^{\circ}$										

Table S7. Spin-spin exchange parameters calculated for (TTF-Bz-TTF)_{meta}²⁺

	Isomer AA			Isomer BB				Isomer AB		
	J _N (c	$J_{N} (cm^{-1}) \qquad J_{Y} (cm^{-1})$		J	$J_N (cm^{-1}) \qquad J_Y(cm^{-1})$		cm ⁻¹)	$J_{N}\left(cm^{-1}\right)$	$J_{Y}(cm^{-1})$	
BP	C2	Cs	C2	Cs	C2	Cs	C2	Cs	C1	C1
TZV	1.4	0.8	1.2	0.8	0.6	0.0	0.6	0.0	1.5	1.5
Aug-cc-pVDZ	1.2	0.7	1.4	0.7	0.8	-0.1	0.8	-0.1	1.3	1.3
IGLO-III	1.2	0.8	1.2	0.8	0.8	0.0	0.8	0.0	1.3	1.3
B3lyp	C2		C2							
TZV	1.2		1.2							
Aug-cc-pVDZ	1.1		1.1							
IGLO-III	1.1		1.1							

^a values calculated at the geometry optimized with Gaussian G03 using B3lyp/6-31G

Table S8. Optimized structures for neutral (TTF-Bz-TTF)_{para}

Rotamer AA (C2) E = -3877.34089 h $\xi_1 = -28.8^{\circ}$ $\theta_1 = -163.5^{\circ}$ $\xi_2 = -28.8^{\circ}$ $\theta_2 = 163.5^{\circ}$ Rotamer AA (Cs) E= -3877.34096 h $\xi_1 = 29.6^{\circ}$ $\theta_1 = 163.7^{\circ}$ $\xi_{2} = -29.6^{\circ}$ $\theta_2 = -163.7^{\circ}$ Rotamer AB (C2) 19 E = -3877.34085 h $\xi_1 = -29.8^{\circ}$ $\theta_1 = -163.6^{\circ}$ $\xi_2 = 150.4^{\circ}$ $\theta_2 = -163.5^{\circ}$ Rotamer AB (Ci) E = -3877.34103h $\xi_1 = 29.7^{\circ}$ $\theta_1 = 163.8^{\circ}$ $\xi_{2} = 149.8^{\circ}$ $\theta_2 = -163.8^{\circ}$

 $\xi_1 = C1C2C7C8, \theta_1 = C7C10C9C11, \xi_2 = C1'C2'C7'C8', \theta_2 = C7C10C9C11$

Table S9. Conformations for (TTF-Bz-TTF)^{+•}_{para}

Same atom numbering as in Table sup.7.

 $\xi_1 = C1C2C7C8, \theta_1 = C7C10C9C11, \xi_2 = C1'C2'C7'C8', \theta_2 = C7C10C9C11$

Table S10. calculated J values for (TTF-Bz-TTF)²⁺_{para}

		Ison	ner AA		Isomer AB					
	C	2	C	Cs	C	22	Cs			
	J _N	J_{Y}	J_{N}	$J_{\rm Y}$	J_{N}	J _Y	J _N	J_{Y}		
	B3LYP (BP)	B3LYP (BP)	B3LYP (BP)	B3LYP (BP)	B3LYP (BP)	B3LYP (BP)	B3LYP (BP)	B3LYP (BP)		
TZV	-9.11 (-34.50)	-9.08 (-33.33)	-11.67 (-42.29)	-11.63 (-40.60)	-10.31 (-41.27)	-10.2 (-39.89)	-11.45 (-41.62)	-11.42 (-39.99)		
Aug-cc-pVDZ	-8.60 (-31.95)	-8.57 (-30.91)	-11.67 (-44.54)	-11.63 (-42.97)	-10.30 (-36.89)	-10.27 (-35.55)	-11.00 (-39.05)	-10.96 (-37.57)		
IGLO-III	-8.02 (-33.23)	-8.00 (-32.33)	-11.59 (-39.81)	-11.55 (-38.28)	-10.57 (-40.10)	-10.54 (-38.83)	-10.24 (-36.60)	-10.21 (-35.29)		

Electrochemical studies. Cyclic voltammetry measurements were performed using a threeelectrode cell equipped with a platinum millielectrode of 0.126 cm² area, an Ag/Ag⁺ pseudoreference and a platinum wire counter-electrode. The potential values were then re-adjusted with respect to the saturated calomel electrode (SCE). The electrolytic media involved a 0.1 mol.L⁻¹ solution of (*n*-Bu₄N)PF₆ in benzonitrile. All experiments have been performed at room temperature at 0.1 V.s⁻¹. Experiments have been carried out with an EGG PAR 273A potentiostat with positive feedback compensation.

Fig. S7 Cyclic voltammetry of TTF-Bz-TTF_{meta}.

Fig. S8 Cyclic voltammetry of TTF-Pyr-TTF_{meta}.