Supporting information

Nanoparticle-Nanotube Interactions in Solution: the Effect of pH and Ionic Strength

Graham A. Rance and Andrei N. Khlobystov

S.1. Preparation of materials

Synthesis and characterisation of citrate-stabilised gold nanoparticles (AuNP)

Citrate-stabilised gold nanoparticles were prepared by modification of the method outlined by Slot and Geuze.¹⁸ An aqueous solution of tetrachloroauric acid trihydrate (1.00 mL of a 1 % wt. aqueous stock solution, 0.026 mmol) in deionised water (79.00 mL) was heated to 60 °C with stirring. To this was added a separate solution heated to 60 °C containing trisodium citrate dihydrate (4.00 mL of a 1 % wt. aqueous stock solution, 0.136 mmol) and tannic acid (0.01 mL of a 1 % wt. aqueous stock solution, 29.4 µmol) in deionised water (3.99 mL) and the combined solution heated at 60 °C until a ruby red colour was observed. This was rapidly brought to the boil and finally cooled to yield a ruby red solution of citrate-stabilised gold nanoparticles.

UV-vis (H₂O): λ /nm 521.32 (6.09x10⁸).

DLS (H₂O): APD/nm 18.6 (8.7 – 30.6 nm, PdI = 0.156, N = 3).

TEM (100 kV, "holey" carbon film): APD/nm $16.3 \pm 1.5 (10.9 - 20.2 \text{ nm}, \text{N} = 100)$.

Modification and characterisation of multi-walled carbon nanotubes (MWNT)

Multi-walled carbon nanotubes (60.4 mg, Nanocyl #3100) were ground using a pestle and mortar for 15 min to yield a black solid (60.4 mg, 100 % wt.). IR (KBr): ν/cm^{-1} 1637s, 1383m. UV-vis (H₂O): λ/nm 254.65 (54.38 mL mg⁻¹ cm⁻¹). TEM (100 kV, "holey" carbon film): ATL/µm 2.04 ± 0.32 (0.6 – 4.6 µm, N = 20); ATD/nm 9.2 ± 2.2 (5.5 – 13.9 nm, N = 50).

Assembly of gold nanoparticle – carbon nanotube composite materials

For each experiment, a known mass of nanotubes (0.01 mg for variation of pH; 0.05 mg for variation of ionic strength) was added to a known volume of gold nanoparticles (3 mL, concentration = 4.90×10^{12} NP mL⁻¹ for variation of pH, 5.37×10^{12} NP mL⁻¹ for variation of ionic strength). The heterogeneous mixture was sonicated for 30 mins at room temperature, the suspension filtered through a 0.2 µm cellulose acetate syringe filter and the supernatant characterised by UV-vis spectroscopy.

Figure S.1. ζ-potential analysis of AuNP as a function of pH (pH = 2.9, 3.8, 5.1, 6.1, 7.1 and 7.6, right to left).

Figure S.2. ζ-potential analysis of MWNT as a function of pH (pH = 2.9, 3.8, 5.1, 6.1, 7.1 and 7.6, right to left).

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010

Figure S.3. ζ -potential analysis of AuNP as a function of ionic strength (I = 0.0006, 0.003, 0.006, 0.015, 0.03 and 0.06 mol dm⁻³, left to right).

Figure S.4. ζ -potential analysis of MWNT as a function of ionic strength (I = 0.0006, 0.003, 0.006, 0.015, 0.03 and 0.06 mol dm⁻³, left to right).

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010 S.3. Calculation of the magnitude of electrostatic forces

Conversion of the recorded ζ -potential into the magnitude of electrostatic forces was determined using a combination of the theories established by Fitzmaurice *et al.*^{28,29} and Ohshima *et al.*^{30,31} ζ -potential (in mV) was initially converted into surface charge density (in C m⁻²) using the equations for distribution of charge around a sphere (AuNP) and a cylinder (MWNT)³⁰ of known dimensions respectively. Surface charge density was next converted into total charge per active surface area (in C)^{30,31} – the active surface area of the components were determined by approximating ellipses overlayed on the surface of a sphere (AuNP) and a cylinder (MWNT) respectively. Relative magnitude of electrostatic force (in N) was calculated using Coulomb's inverse square law – the distance between charges was assumed to be 3 nm as this is the distance where all short-range, attractive interactions tend to zero²⁹ and as such this is the position of maximum electrostatic repulsion.