Supplementary information

The DFT/CC method is briefly described in the Section 2 (for more detailed description see Refs. [1-3]). Calculations of the interaction energies used in Eq. [1] (Section 2) for evaluating the DFT/CC corrections at the PBE/AVQZ and CCSD(T)/CBS levels of theory are detailed below.

Complete Basis Set (CBS) extrapolation

The CCSD(T)/CBS estimates are obtained from the simple correlation dependence on the cardinal number X

$$E_X^{cor} = E_{CBS}^{cor} + A \cdot X^{-3}, \qquad [1]$$

where E^{cor} stands for the correlation energy. For uncorrelated part the HF/AV5Z energy is taken as the CBS limit. The CCSD(T)/CBS calculations for the H₂..A complexes (A = Ar, C₂H₂, C₂H₄, C₂H₆, C₆H₆, CH₄, H₂, H₂O, N₂, NH₃, CO, CO₂) were carried out according formula

$$E_{CCSD(T)/CBS} = E_{CCSD(T)/CBS}^{cor} (AVTZ/AVQZ) + E_{HF/AV5Z}.$$
[2]

The CCSD(T)/CBS estimates for the benzene. A complexes were obtained as

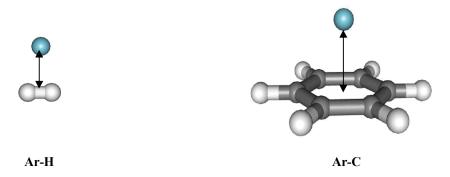
$$E_{CCSD(T)/CBS} = E_{CCSD(T)/AVDZ}^{cor} + E_{MP2/CBS}^{cor} (AVTZ/AVQZ) - E_{MP2/AVDZ}^{cor} + E_{HF/AV5Z}.$$
[3]

Monomer geometries

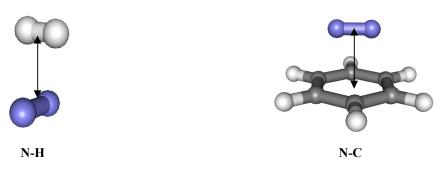
The CCSD(T)/CBS and PBE/AVQZ calculations were performed with frozen monomer geometries obtained at the CCSD(T)/AVQZ level. The benzene geometry was taken from Ref. [1].

Basis sets

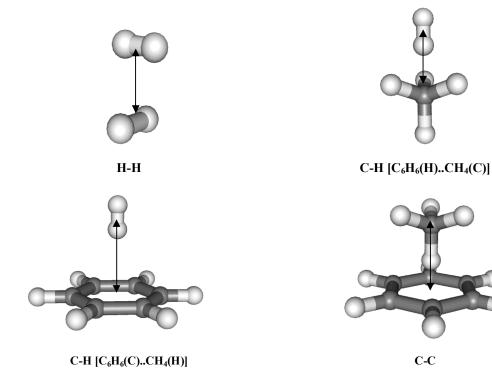
Calculations on the reference set systems were performed with the augmented Dunning's correlation-consistent valence-*X*- ζ basis set with polarization functions (AVXZ, see Section 2 for more details). The augmented functions on benzene's hydrogens were stripped in HF/AV5Z calculations. All interaction energies were corrected for the basis set superposition error (BSSE) by standard counterpoise correction of Boys and Bernardi.

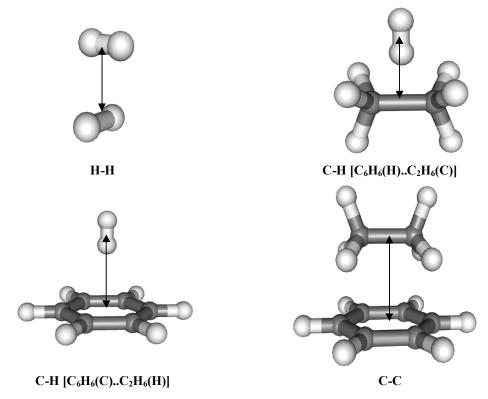

DFT/CC reference sets

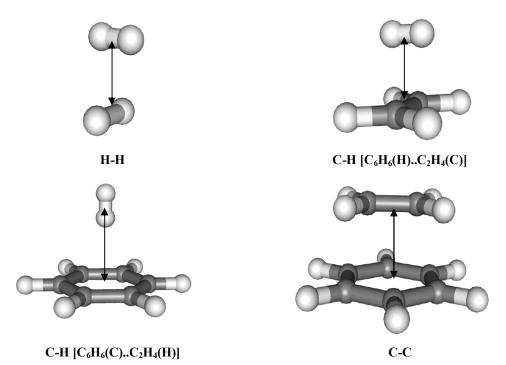
The DFT/CC reference sets from which the atom-atom correction functions were obtained are given in Figs. [1-9]. One dimensional PES scans were performed for each reference system as indicated by an arrow. The reference sets for H_2 , C_6H_6 , and H_2O were reported elsewhere¹⁻³ and they are not included in Figs. [1-9].

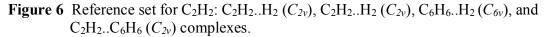

References

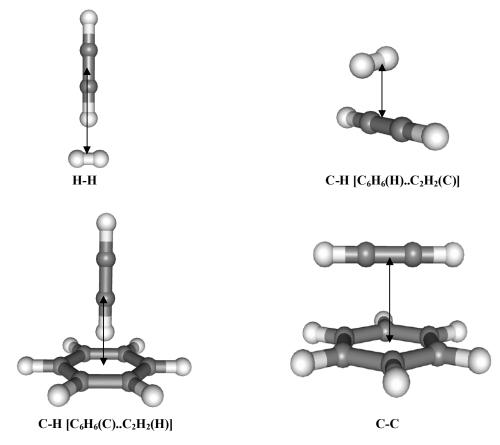
- [1] Bludsky O., Rubes M., Soldan P., Nachtigall P., J. Chem. Phys., 2008, **128**, 114102.
- [2] Rubes M., Bludsky O., *Chemphyschem*, 2009, **10**, 1868.
- [3] Rubes M., Nachtigall P., Vondrasek J., Bludsky O., J. Phys. Chem. C, 2009, 113, 8412.

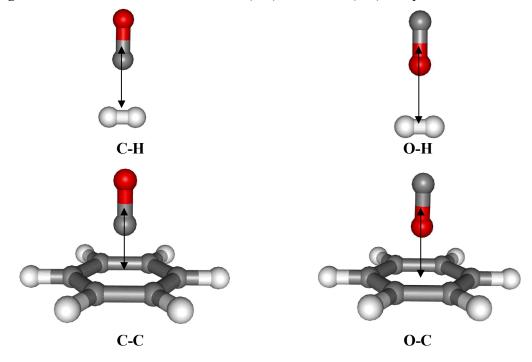

Figure 1 Reference set for argon atom: Ar..H₂ ($C_{2\nu}$) and Ar..C₆H₆ ($C_{6\nu}$) complexes.

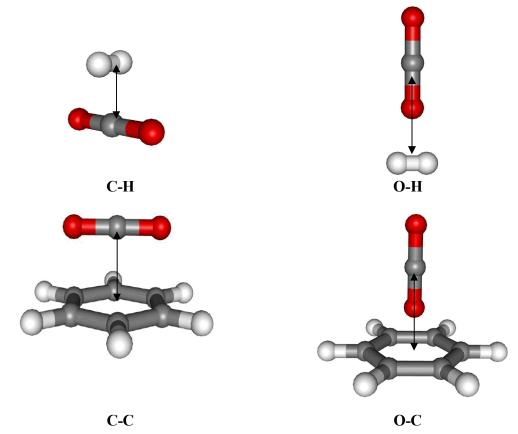

Figure 2 Reference set for N_2 molecule: $N_2..H_2(C_{2\nu})$ and $N_2..C_6H_6(C_{2\nu})$ complexes.

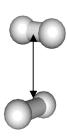

Figure 3 Reference set for CH₄ molecule: H₂ dimer (D_{2d}) , CH₄...H₂ (C_{3v}) , C₆H₆...H₂ (C_{6v}) , and CH₄...C₆H₆ (C_{3v}) complexes.

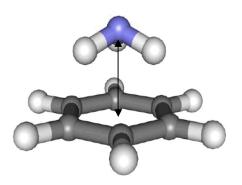


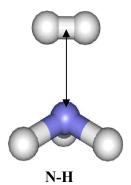

Figure 4 Reference set for C_2H_6 : H_2 dimer (D_{2d}) , $C_2H_6...H_2$ (C_{2v}) , $C_6H_6...H_2$ (C_{6v}) , $C_6H_6...H_2$ (C_{6v}) , and $C_2H_6...C_6H_6$ (C_{2v}) complexes.


Figure 5 Reference set for C_2H_4 : H_2 dimer (D_{2d}), C_2H_4 .. H_2 ($C_{2\nu}$), C_6H_6 .. H_2 ($C_{6\nu}$), and C_2H_4 .. C_6H_6 ($C_{2\nu}$) complexes.




Figure 7 Reference set for CO: CO..H₂ ($C_{2\nu}$), CO..C₆H₆ ($C_{6\nu}$) complexes.


Figure 8 Reference set for CO₂: CO₂..H₂ ($C_{2\nu}$) and CO₂..C₆H₆ ($C_{2\nu}$, $C_{6\nu}$) complexes.


Figure 9 Reference set for NH₃: H₂ dimer (D_{2d}) , NH₃..H₂ (C_s) , and NH₃..C₆H₆ (C_{3v}) complexes.



N-C