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I. OVERVIEW

FIG. 1: Schematic (conceptual) representation of the physical
processes simulated in the calculations. An H2 molecule is
electronically, vibrationally and rotationally excited by five
laser pulses. By changing the time-delay between the pulses,
the molecule can be pushed towards ionization (pulse train
max) or dissociation (pulse train min), thereby changing the
branching ratio between the two processes.

A schematic overview of the physical situation simu-
lated in the calculations is shown in Figure 1. This sup-
plement gives further information on the three topics in
the appendix of the paper. Note that natural units for
electron scattering are used throughout1,2.

II. TIME-DEPENDENT MQDT

The molecular wave functions and dipole transition
moments are calculated using MQDT, which renders No

wave functions, one for each product channel, of the form

|Ψ−k (r, E)〉 =
No+Nc∑

j=1

|j〉φj(r, E)Tkj(E), (1)

where the sum runs over No+Nc open and closed chan-
nels, each channel corresponding to a specific state of the
molecular ion and the outer electron. The kets |j〉 con-
tain the electronic, vibrational and rotational state of the
molecular ion, and the spin and angular momentum of
the outer electron, whose energy normalized radial wave
function is given by φj(r, E). The No× (No+Nc) expan-

sion coefficients Tkj are calculated by MQDT such that
the total wave functions |Ψ−k (r, E)〉 fulfill the appropriate
boundary conditions at each energy3. The non-adiabatic
interactions, included through a scattering matrix for the
interaction between electron and molecular ion, mix the
different channels and give a treatment similar to config-
uration interaction in ab initio theory4. Strictly speak-
ing, the wave functions in Equation (1) are valid outside
a radius rc, corresponding to the radius of the ground
state of the molecule, which is much more compact than
the excited states. On the other hand, the dipole tran-
sition moments D−

k (E) = 〈s|r|Ψ−k 〉, where s denotes the
molecular ground state, are determined inside the radius
rc. Dissociation channels, leading to neutral atoms on a
specific adiabatic potential are included within the same
framework5.

The dynamics can be studied by the probability den-
sity,

∣∣〈j|Ψ−k (r, t)〉
∣∣2, giving the time-dependent popula-

tion, Pj(t), in each channel j,

Pj(t) =
∫ ∣∣〈j|Ψ−k (r, t)〉

∣∣2 dr. (2)

Alternatively, one can study the probability flux j,

j =
1

mµ
Im

[
〈Ψ−k (r, t)|j〉 ∂

∂r
〈j|Ψ−k (r, t)〉

]
, (3)

where mµ is the reduced mass in channel j. The final
product cross sections, σk, in each product channel k are
proportional to the square amplitude of the partial dipole
transition moments and the spectral profile of the optical
pulse,

σk =
∫
|ε(E)|2|D−

k (E)|2 dE. (4)

The partial product yields, Yk = σk/σtot, are defined
relative the total product cross section,

σtot =
No∑
k

σk, (5)

such that the total yield Ytot=1.

The complex excitation function, cef(E, t), abbrevi-
ated CEF, appears in Equation (1) in the Appendix of
the paper. It is defined2,6 as,

cef(E, t) =
∫ ∞

−∞
dE′ ε(E′)

∫ t

T=−∞
dt′ eı(E−E′)t′ , (6)
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where ε(E) is the Fourier transform of the time-
dependent optical field ε(t). Essentially, Equation (6)
shows the time-evolution of the spectral profile. At the
end of the optical pulse, the integral over t′ in Equation
(6) becomes 2πδ(E −E′), making the CEF proportional
to the Fourier transform of the optical pulse,

cef(E, t →∞) = 2πε(E). (7)

III. PULSE TRAINS

We are interested in a sequence of N identical and
coherent pulses, ε0(t), each centered at a different time
ti,

ε(t) =
1√
N

N∑
i=1

ε0(t− ti), (8)

where the normalization factor 1/
√

N ensures that the
total excitation intensity of the pulse train is independent
of the number of pulses. The time delay and relative
optical phase between each pulse affects the interference
of the excited wave packets dramatically. The asymptotic
properties of the pulse train are given by the Fourier
transform of the pulse train

ε(E) =
ε0(E)√

N

N∑
i=1

eıEti =
ε0(E)√

N
F (E), (9)

where ε0(E) is the Fourier transform of a single pulse
ε0(t) and the net modulation of the pulse envelope re-
sulting from the pulse train is contained in the function
F (E). This function provides a comb-like structure that
modulates the single-pulse spectral profile ε0(E); in the
limit of a large number of pulses, we obtain a sharp fre-
quency comb7. For a constant time delay 40 between
pulses, F (E) becomes a power series and can be summed
analytically as,

F (E) = eıE40(N−1)/2 sin
E40N

2
/ sin

E40

2
, (10)

which corresponds to a comb with narrow peaks of height
N and width 2π/40N , with each pair of peaks separated
by 2π/40. By adjusting the number of pulses N and the
time delay 40 between them, specific net optical pump-
ing can be achieved.

This requires that we can align the comb with relevant
spectral features of the molecule. To position a peak at
a particular target energy Ef , the time delay 40 must
be adjusted by a small amount γ(Ef ) �40,

γ(Ef ) = − 1
Ef

mod(Ef40, 2π), (11)

where we use the numerical modulo function, defined as
mod(x, y) = x − floor(x

y )y. Once a base position and

spacing of the comb have been set, a full range of align-
ments can be explored by changing the relative optical
phase θ between subsequent pulses. This amounts to
small additional corrections in the time delay, rendering
the final time delay

4 = 40 + γ(Ef ) + θ/E0, (12)

where E0 is the central frequency of the optical pulses
ε0(t). One can expect the time delay 40 to be on the
order of picoseconds, while the adjustments γ(Ef ) and
θ/E0 would be about two orders of magnitude shorter.

Numerically, we optimize the time-delay 4 directly.
In general, the coarse time-delay 40 is found to be quite
stable (or as here, constant), as it corresponds to some
system-specific dynamics. On the other hand, the final
outcome of the optimization is highly sensitive to the
exact adjustments of the relative optical phase θ.

A. Gaussian pulses

In Equation (8), we make no assumption about the
shape of the optical pulses ε0(t), but in our calculations
we use Gaussian pulses, which are easily generated ex-
perimentally and for which the CEF can be calculated
analytically2,6. A single Gaussian optical pulse εg(t) can
be written as

εg(t) = εte
−2 ln 2(t/τt)

2 (
eıE0t + e−ıE0t

)
, (13)

where E0 is the central optical frequency, εt the ampli-
tude and τt the full width at half maximum (FWHM)
pulse duration, defined for the intensity profile, propor-
tional to the square modulus of the electric field. The
frequency domain representation obtained by a Fourier
transform of Equation (13) is

εg(E) = εE

(
e−α2(E−E0)

2
+ e−α2(E+E0)

2
)

, (14)

with εE = εtτt/
√

4 ln 2 and α = τt/
√

8 ln 2. The
(FWHM) width is τE = 4 ln 2/τt.

IV. CALCULATIONS

Dipole excitation of ground state H2 molecules leads
to singlet ungerade H2 states (J=1, negative total par-
ity) and is dominated by l=1 partial waves, as expected
from single-photon selection rules. Calculated resonance
positions for the three strongest resonances, n=34 and
v=1,2, are given in Table I, along with the best available
experimental positions and lifetimes etc. Note that the
various intrinsic times of the system span almost three
orders of magnitude.

Analysis of the wave function eigenvectors from the
MQDT calculation allows us to identify the main com-
ponents of the time-independent spectrum, as shown in
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TABLE I: The three complex resonances (n=34 and v=1,2) in the calculated singlet ungerade H2 spectrum. The integrated
intensities for the three resonances are more than an order of magnitude stronger than all other resonances in this region of the
spectrum. At energies below the resonance n=34, the integrated intensities are in the range 1.5–4.6×10−3, while at energies
above the resonance v=1 they are in the range 1.3×10−3–1.1×10−4. In both cases the integrated intensities decrease away from
the resonance. Also given are widths estimated from the calculated spectrum, along with corresponding lifetimes. The table
gives characteristic time scales associated with the resonances: (i) the classical orbit period (Kepler) time τcl(n) = 1.52×10−4n3

ps, and (ii) the times τij associated with the quantum beats between the coherently excited resonances i and j.

Approximate Calculated Observed Calculated Integrated Life Kepler Beat
description energy/cm−1 energy/cm−1 width/cm−1 intensity time/ps time/ps time/ps

n=34 34p2,v+=0 124494.0 124495.5 1.7 3.3×10−2 3.2 6.0 τ34,2 ≈ 16
v=2 5pπ,v=2 124496.4 124495.5 0.25 1.7×10−2 21.3 0.02 τ2,1 = 3.0
v=1 7pπ,v=1 124507.5 124507.2 0.06 1.2×10−2 83 0.05 τ1,34 = 2.6

TABLE II: Channel groupings for population (probability)
analysis of the ionization and dissociation dynamics. The
calculation uses two open dissociation channels corresponding
to molecular dissociation on the B′1Σ+

u and C1Πu states of
H2, and 20 H+

2 (X2Σ+
g , v+ ≥0, N+=0,2) + e−(l=1) channels.

Group Comment MQDT channel
Ion Ionization H+

2 (v+=0,N+=0)a
Diss Dissociation B′1Σ+

u → H(1s)+H(n=2)
Ryd Rydberg H+

2 (v+=0,N+=2)a

v = 1 interloper 1 H+
2 (v+=1,N+=0 and 2)a

v = 2 interloper 2 H+
2 (v+=2,N+=0 and 2)a

aPlus electron e−(l=1). Electronic state of H+
2 is X2Σ+

g .

TABLE III: Final product cross sections, σk, and branching
ratios for the reference pulse and optimized pulse trains max
and min. The time delays are defined according to Equation
(12). The coarse time-delay is 40=2.99 ps and γ(Ef=124496
cm−1) for both pulse trains, but the relative optical phase θ
is different.

reference max min
ion (σi) 1.40×10−3 4.11×10−3 3.26×10−4

diss (σd) 2.13×10−5 2.27×10−5 2.11×10−5

ratio (σi/σd) 66 181 15
phase (θ) – 0.13π 0.75π

Figure 1 in the paper. These channels are presented in
Table II.

To compare the yields between different excitation
schemes, we normalize all cross sections by the total cross
section, σtot, for the single reference pulse. Relative pop-
ulations, useful to compare the dynamics for different
excitation schemes side-by-side, are obtained by normal-
izing the populations Pj(t) given by Equation (2) by the
final product (ie. ionization or dissociation) cross section
for each particular excitation scheme. Hence, relative
population “1”, corresponds to the final product cross
section, σk, for that particular excitation scheme. See
also text around Equations (4-5). The final product cross
sections, σk, for the three excitation schemes are given in
Table III.
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