Supplementary Material to

Molecular Dynamic Simulations of OH-Stretching Overtone Induced

Photodissociation of Fluorosulfonic and Chlorosulfonic Acid

Priyanka Gupta

Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand

Joseph R. Lane

Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Henrik G. Kjaergaard^{*}

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark **Table S1:** Calculated CC-VSCF frequencies (in cm^{-1}) for the OH-stretching SOH-bending and OH-stretching OSOH-torsion combination states in FSO₃H.

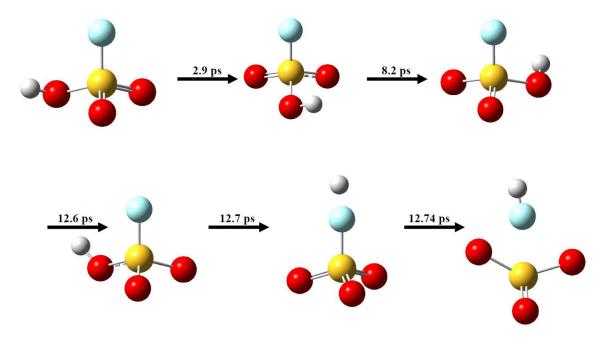
OH-stretching state	$OH_{str} + SOH_{bend}$	$OH_{str} + OSOH_{tors}$
v=5	18243	17385
v=6	22190	21331
v=7	26928	26069

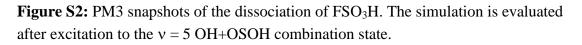
Parameter	PM3	MP2/TZP	CCSD(T)/AV(T+d)Z
FSO ₃ H			
R _{O-H}	1.3198	1.1709	1.2379
$ heta_{ ext{H-O-S}}$	91.38	91.96	84.11
$\phi_{\text{H-O-S-O}}$	100.21	99.91	99.61
R _{S-X}	1.7951	2.2437	1.9780
ClSO ₃ H			
R _{O-H}	1.3249	1.2142	1.2854
$\theta_{\text{H-O-S}}$	103.05	98.36	89.13
<i>ф</i> н-о-s-о	98.14	100.26	101.18
R _{S-X}	2.5164	2.8835	2.4146

Table S2: Selected geometric parameters (in Angstroms and degrees) for the dissociative transition state of FSO₃H and ClSO₃H.

Mode	PM3	MP2/TZP	CCSD(T)/AV(D+d)Z
FSO ₃ H			
1	1408	2044	1951
2	1051	1452	1393
3	942	1260	1228
4	806	999	958
5	793	991	944
6	651	701	686
7	553	630	607
8	402	467	483
9	359	449	458
10	343	326	331
11	219	215	219
12	2306i	1478i	1565i
CISO ₃ H			
1	1688	2219	1603
2	1134	1373	1374
3	968	1124	1217
4	701	1010	946
5	696	958	749
6	507	692	569
7	394	536	500
8	373	445	445
9	350	391	441
10	137	307	221
11	127	256	167
12	1917i	1857i	1533i

Table S3: Harmonic frequencies (in cm^{-1}) for the dissociative transition state of FSO₃H and ClSO₃H.


Parameter	PM3	MP2/TZP	CCSD(T)/AV(T+d)Z
FSO ₃ H			
R _{O-H}	1.3518	1.2942	1.2976
$ heta_{ ext{H-O-S}}$	85.37	73.38	73.39
$\phi_{\text{H-O-S-O}}$	130.14	134.60	132.99
R _{S-X}	1.5405	1.6017	1.54847
ClSO ₃ H			
R _{O-H}	1.3689	1.2969	1.2933
$\theta_{\text{H-O-S}}$	85.99	73.64	73.70
<i>ф</i> н-о-s-о	129.26	129.51	129.38
R _{S-X}	2.0664	2.0567	2.0104


Table S4: Selected geometric parameters (in Angstroms and degrees) for the hydrogenhopping transition state of FSO_3H and $CISO_3H$.

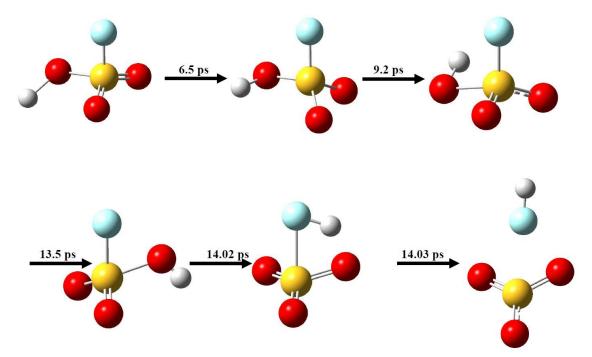

Mode	PM3	MP2/TZP	CCSD(T)/AV(D+d)Z
FSO ₃ H			
1	1152	2231	2138
2	946	1410	1351
3	873	1164	1119
4	808	1039	1004
5	750	971	938
6	640	780	791
7	456	676	654
8	391	493	498
9	353	463	470
10	295	412	402
11	252	307	310
12	2443i	1874i	1928i
ClSO ₃ H			
1	1110	2219	2123
2	931	1373	1319
3	846	1124	1077
4	803	1010	970
5	720	958	931
6	518	692	669
7	450	536	531
8	366	445	452
9	344	391	387
10	248	307	300
11	225	256	258
12	2278i	1857i	1920i

Table S5: Harmonic frequencies (in cm^{-1}) for the hydrogen-hopping transition state of FSO₃H and ClSO₃H.

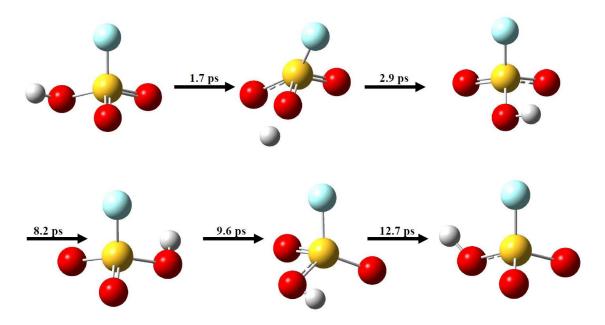
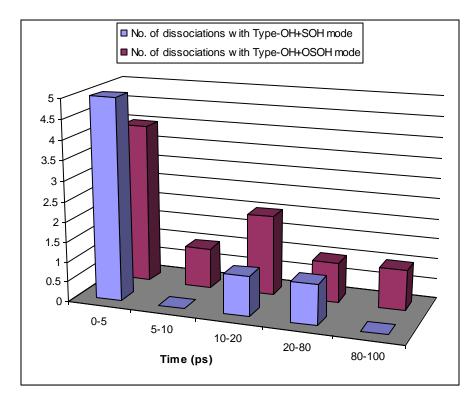
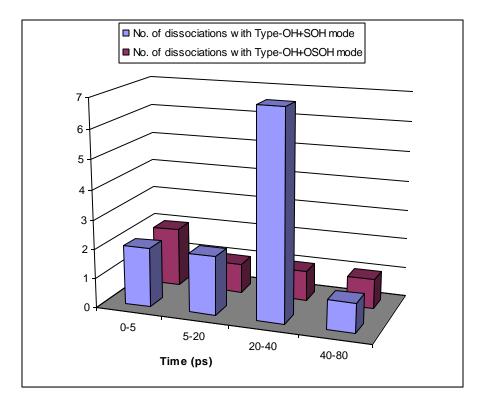
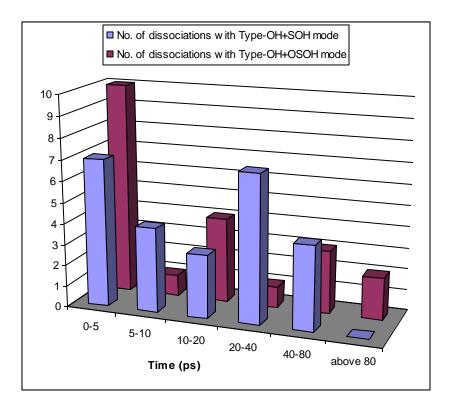
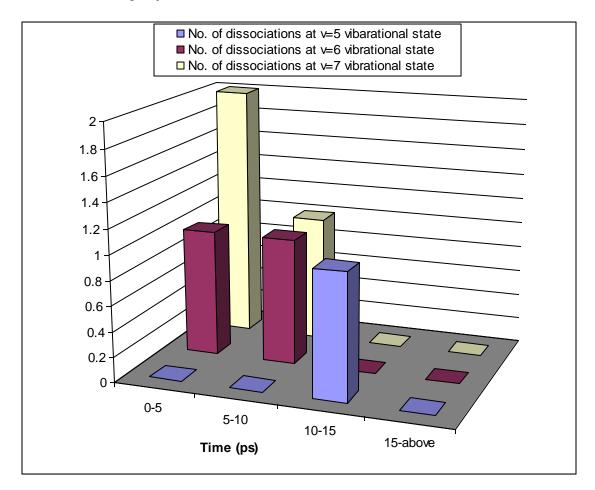

Figure S1: PM3 snapshots of the dissociation of FSO₃H. The simulation is evaluated after excitation to the v = 5 OH+SOH combination state.

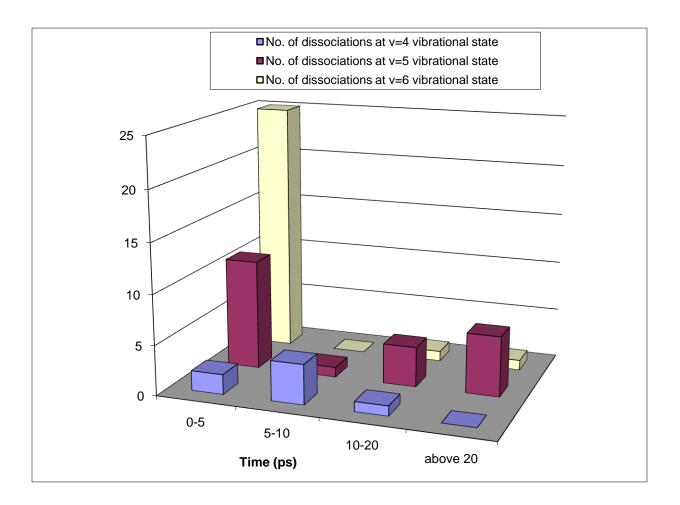
Figure S3: PM3 snapshots of hydrogen-hopping in FSO₃H. The simulation is evaluated after excitation to the v = 5 OH+SOH combination state.

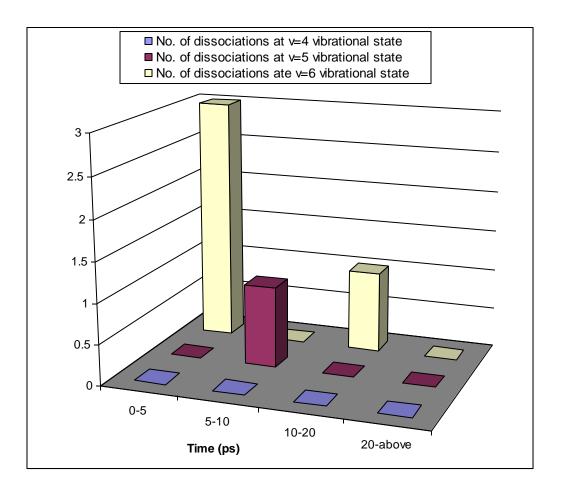
Figure S4: PM3 snapshots of hydrogen-hopping in FSO₃H. The simulation is evaluated after excitation to the v = 5 OH+OSOH combination state.

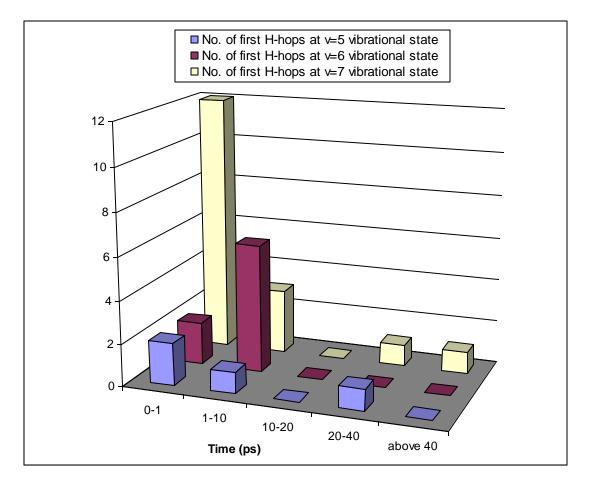
Figure S5: The time distribution of dissociation events for the PM3 $\nu = 5$ OH+SOH and OH+OSOH combination state trajectories of FSO₃H.

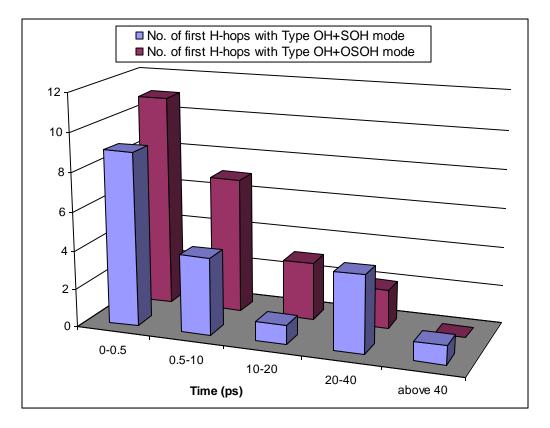




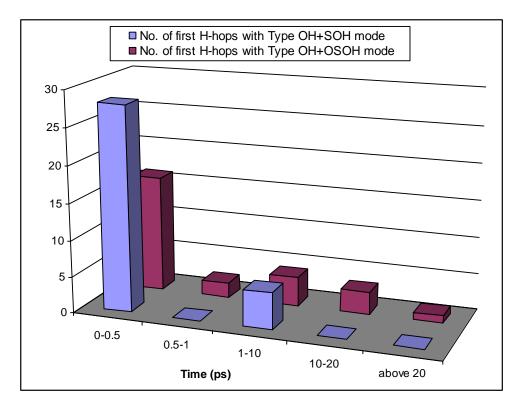

Figure S6: The time distribution of dissociation events for the PM3 $\nu = 6$ OH+SOH and OH+OSOH combination state trajectories of FSO₃H.

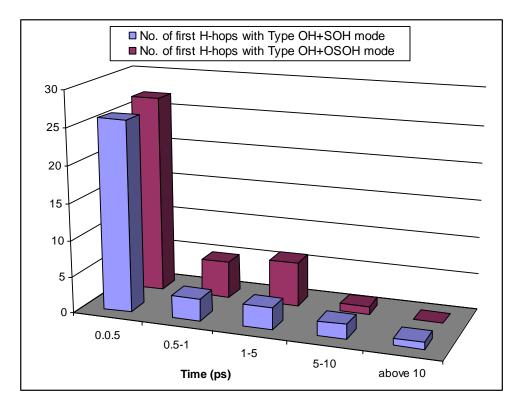

Figure S7: The time distribution of dissociation events for the PM3 v = 7 OH+SOH and OH+OSOH combination state trajectories of FSO₃H.

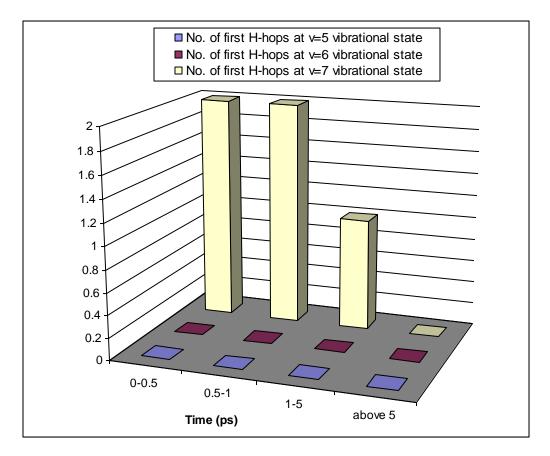

Figure S8: The time distribution of dissociation events for the MP2/TZP v=5, v=6 and v=7 OH-stretching trajectories of FSO₃H.

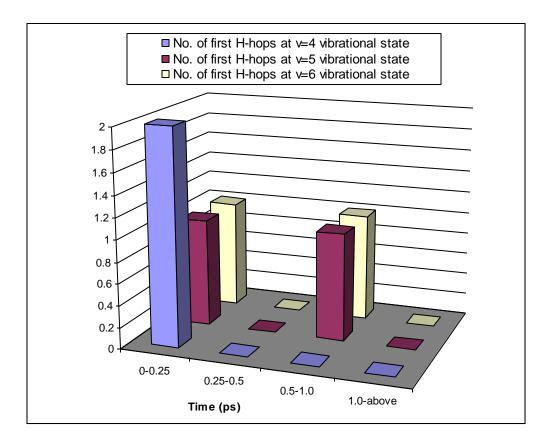

Figure S9: The time distribution of dissociation events for the PM3 v=4, v=5 and v=6 OH-stretching trajectories of ClSO₃H.


Figure S10: The time distribution of dissociation events for the MP2/TZP v=4, v=5 and v=6 OH-stretching trajectories of ClSO₃H.


Figure S11: The time distribution of the first hydrogen-hopping event exhibited in PM3 trajectories for the v = 5, v = 6 and v = 7 OH-stretching states of FSO₃H.


Figure S12: The time distribution of the first hydrogen-hopping event exhibited in PM3 trajectories for the v = 5 OH+SOH and OH+OSOH combination states of FSO₃H.


Figure S13: The time distribution of the first hydrogen-hopping event exhibited in PM3 trajectories for the v = 6 OH+SOH and OH+OSOH combination states of FSO₃H.


Figure S14: The time distribution of the first hydrogen-hopping event exhibited in PM3 trajectories for the v = 7 OH+SOH and OH+OSOH combination states of FSO₃H.

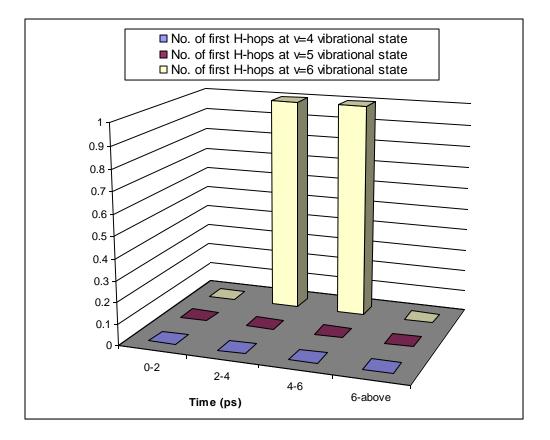

Figure S15: The time distribution of the first hydrogen-hopping event exhibited in MP2/TZP trajectories for the $\nu = 5$, $\nu = 6$ and $\nu = 7$ OH-stretching states of FSO₃H.

Figure S16: The time distribution of the first hydrogen-hopping event exhibited in PM3 trajectories for the v = 4, v = 5 and v = 6 OH-stretching states of ClSO₃H.

Figure S17: The time distribution of the first hydrogen-hopping event exhibited in MP2/TZP trajectories for the v = 4, v = 5 and v = 6 OH-stretching states of ClSO₃H.

