Supporting Information: Performance of PNOF3 for reactivity studies: X[BO]and X[CN] isomerization reactions (X=H,Li) as a case study

X. Lopez, M. Piris, J. M. Matxain, and J. M. Ugalde

Kimika Fakultatea, Euskal Herriko Unibertsitatea,

and Donostia International Physics Center (DIPC). P.K. 1072, 20080 Donostia, Euskadi, Spain.

Table S1: Potential surface scan for the for the BOH to HBO isomerization as a function of the H-B-O angle. Absolute energies in hartrees and relative energies, in parenthesis, with respect to B-O-H linear structure (angle of 0.0°) in kcal/mol are shown. The cc-pVTZ basis set have been used for these calculations, considering 6d and 10f basis functions, and the geometries are partially optimized at the CCSD/cc-pVTZ level of theory with the H-B-O angle fixed at the values of column 1.

Angle	$_{ m HF}$	PNOF3	CCSDT
0.0	-100.136080 (0.00)	-100.518226 (0.00)	-100.509785 (-0.00)
10.0	-100.138045 (-1.23)	-100.519130 (-0.57)	-100.510340 (-0.35)
20.0	-100.141682 (-3.52)	-100.521364 (-1.97)	-100.512567 (-1.75)
30.0	-100.139891 (-2.39)	-100.520455 (-1.40)	-100.511649 (-1.17)
40.0	-100.124527 (7.25)	-100.510844 (4.63)	-100.500742 (5.67)
50.0	-100.097200 (24.40)	-100.494805 (14.70)	-100.481430 (17.79)
60.0	-100.072517 (39.89)	-100.485610(20.47)	$-100.467932\ (\ 26.26\)$
70.0	-100.063665 (45.44)	-100.490714 (17.26)	-100.469601 (25.22)
80.0	-100.071564 (40.48)	$-100.501707 \ (10.37)$	-100.481708 (17.62)
90.0	-100.089393 (29.30)	-100.513992 (2.66)	-100.497684 (7.59)
100.0	-100.110724 (15.91)	-100.526352 (-5.10)	-100.514269 (-2.81)
110.0	-100.131782 (2.70)	-100.538616 (-12.79)	-100.530017 (-12.70)
120.0	-100.150857 (-9.27)	-100.550362 (-20.17)	-100.544309 (-21.66)
130.0	-100.167246 (-19.56)	-100.561250 (-27.00)	$-100.556832\ (\ -29.52\)$
140.0	-100.180701 (-28.00)	-100.570810 (-33.00)	-100.567411 (-36.16)
150.0	-100.191159 (-34.56)	-100.578759 (-37.99)	-100.575964 (-41.53)
160.0	-100.198626 (-39.25)	-100.584797 (-41.77)	-100.582444 (-45.59)
170.0	-100.203127 (-42.07)	-100.588782 (-44.27)	-100.586670 (-48.25)
180.0	-100.204605 (-43.00)	-100.590192 (-45.16)	-100.588181 (-49.19)

Table S2: Potential surface scan for the for the CNH to HCN isomerization as a function of the H-C-N angle. Absolute energies in hartrees and relative energies, in parenthesis, with respect to C-N-H linear structure (angle of 0.0°) in kcal/mol are shown. The cc-pVTZ basis set have been used for these calculations, considering 6d and 10f basis functions, and the geometries are partially optimized at the CCSD/cc-pVTZ level of theory with the H-C-N angle fixed at the values of column 1.

Angle	$_{ m HF}$	PNOF3	CCSDT
0.0	-92.892896 (0.00)	-93.298437 (0.00)	$-93.285839\ (\ -0.00\)$
10.0	-92.890910 (1.25)	-93.296457 (1.24)	$-93.283564 \ (\ 1.43 \)$
20.0	-92.885233 (4.81)	-93.291395 (4.42)	$-93.277705 \ (\ 5.10 \)$
30.0	-92.876519 (10.28)	-93.282372 (10.08)	$-93.267888\ (\ 11.26\)$
40.0	-92.865546 (17.16)	$-93.270856\ (17.31)$	$-93.255842\ (\ 18.82\)$
50.0	-92.853934 (24.45)	-93.261064 (23.45)	$-93.245436\ (\ 25.35\)$
60.0	-92.842595 (31.56)	-93.253688 (28.08)	$-93.237201\ (\ 30.52\)$
70.0	-92.833971 (36.98)	-93.249816 (30.51)	$-93.232742\ (\ 33.32\)$
80.0	-92.831372 (38.61)	-93.251769 (29.28)	-93.235106 (31.84)
90.0	-92.835235 (36.18)	-93.258675 (24.95)	$-93.243417\ (\ 26.62\)$
100.0	-92.843771 (30.83)	-93.268177 (18.99)	$-93.254714\ (\ 19.53\)$
110.0	-92.854909 (23.84)	-93.278237 (12.68)	$-93.266548\ (\ 12.11\)$
120.0	-92.866865 (16.33)	$-93.287733\ (\ 6.72)$	-93.277587 (5.18)
130.0	-92.878405 (9.09)	-93.296049 (1.50)	$\textbf{-93.287311}\ (\ \textbf{-0.92}\)$
140.0	-92.888690 (2.64)	-93.303176 (-2.97)	$\textbf{-93.295542}\ (\ \textbf{-6.09}\)$
150.0	-92.897154 (-2.67)	-93.308925 (-6.58)	-93.302144 (-10.23)
160.0	-92.903419 (-6.60)	-93.313096 (-9.20)	$-93.306977\ (\ -13.26\)$
170.0	-92.907260 (-9.01)	-93.315660 (-10.81)	-93.309958 (-15.13)
180.0	-92.908551 (-9.82)	-93.316533 (-11.36)	-93.310979 (-15.78)

Table S3: Potential surface scan for the for the BOLiH to LiBO isomerization as a function of the Li-B-O angle. Absolute energies in hartrees and relative energies, in parenthesis, with respect to B-O-Li linear structure (angle of 0.0°) in kcal/mol are shown. The cc-pVTZ basis set have been used for these calculations, considering 6d and 10f basis functions, and the geometries are partially optimized at the CCSD/cc-pVTZ level of theory with the Li-B-O angle fixed at the values of column 1.

Angle	$_{ m HF}$	PNOF3	CCSDT
0.0	-107.086539 (0.00)	-107.491868 (0.00)	-107.482026 (0.00)
10.0	-107.086329 (0.13)	-107.491888 (-0.01)	$-107.482073\ (\ -0.03\)$
20.0	-107.085730 (0.51)	-107.491753 (0.07)	$-107.481757 \ (\ 0.17 \)$
30.0	-107.084822 (1.08)	-107.491529 (0.21)	-107.481108 (0.58)
40.0	-107.083589 (1.85)	-107.491738 (0.08)	-107.480733 (0.81)
50.0	-107.081662 (3.06)	-107.492400 (-0.33)	-107.480619 (0.88)
60.0	-107.078101 (5.29)	-107.491631 (0.15)	-107.479281 (1.72)
70.0	-107.072583 (8.76)	-107.488398 (2.18)	-107.475601 (4.03)
80.0	-107.066685 (12.46)	-107.484212 (4.80)	-107.470974 (6.94)
90.0	-107.062271 (15.23)	-107.480947 (6.85)	$-107.467312\ (\ 9.23\)$
100.0	-107.060288 (16.47)	-107.479340 (7.86)	-107.465549 (10.34)
110.0	-107.060605 (16.27)	-107.479256 (7.91)	$-107.465661 \ (\ 10.27 \)$
120.0	-107.062588 (15.03)	-107.480663 (7.03)	-107.467201 (9.30)
130.0	-107.065510 (13.20)	-107.482626 (5.80)	-107.469641 (7.77)
140.0	-107.068726 (11.18)	-107.485023 (4.30)	-107.472478 (5.99)
150.0	-107.071725 (9.30)	-107.487331 (2.85)	-107.475210 (4.28)
160.0	-107.074124 (7.79)	-107.489098 (1.74)	-107.477369 (2.92)
170.0	-107.075673 (6.82)	-107.490207 (1.04)	-107.478686 (2.10)
180.0	-107.076192 (6.49)	-107.490507 (0.85)	$-107.479121\ (\ 1.82\)$

Table S4: Potential surface scan for the for the CNLi to LiCN isomerization as a function of the Li-C-N angle. Absolute energies in hartrees and relative energies, in parenthesis, with respect to C-N-Li linear structure (angle of 0.0°) in kcal/mol are shown. The cc-pVTZ basis set have been used for these calculations, considering 6d and 10f basis functions, and the geometries are partially optimized at the CCSD/cc-pVTZ level of theory with the Li-C-N angle fixed at the values of column 1.

Angle	$_{ m HF}$	PNOF3	CCSDT
0.0	-99.820431 (0.00)	-100.245809 (0.00)	-100.231249 (-0.00)
10.0	-99.820100 (0.21)	-100.245323 (0.30)	$-100.230879\ (\ 0.23\)$
20.0	$-99.819261 \ (\ 0.73)$	-100.244297 (0.95)	$-100.229950\ (\ 0.81\)$
30.0	-99.818296 (1.34)	-100.243313 (1.57)	$-100.229069\ (\ 1.37\)$
40.0	-99.817543 (1.81)	-100.243444 (1.48)	-100.228872 (1.49)
50.0	-99.816970 (2.17)	-100.243814 (1.25)	-100.229398 (1.16)
60.0	-99.816012 (2.77)	-100.244598 (0.76)	$-100.229937\ (\ 0.82\)$
70.0	-99.814153 (3.94)	-100.244337 (0.92)	-100.229339 (1.20)
80.0	-99.811405 (5.66)	-100.242320 (2.19)	-100.227369 (2.43)
90.0	-99.808501 (7.49)	-100.239959 (3.67)	-100.224972 (3.94)
100.0	-99.806157 (8.96)	-100.238124 (4.82)	-100.223064 (5.14)
110.0	-99.804832 (9.79)	-100.236965 (5.55)	$-100.222063\ (\ 5.76\)$
120.0	-99.804553 (9.96)	-100.237013 (5.52)	$-100.221975\ (\ 5.82\)$
130.0	-99.805119 (9.61)	-100.237448 (5.25)	$-100.222595\ (\ 5.43\)$
140.0	-99.806211 (8.92)	-100.238582 (4.54)	-100.223664 (4.76)
150.0	-99.807488 (8.12)	-100.239769 (3.79)	$-100.224923\ (\ 3.97\)$
160.0	-99.808648 (7.39)	-100.240843 (3.12)	-100.226091 (3.24)
170.0	-99.809445 (6.89)	-100.241532 (2.68)	$-100.226910\ (\ 2.72\)$
180.0	-99.809750 (6.70)	-100.241477 (2.72)	-100.227204 (2.54)