Supporting information for

On-off QD switch that memorizes past recovery from quenchings by diazonium salts

Marta Liras, María González-Béjar and J. C. Scaiano

Page S2: Pictures of QD solutions after addition of compound 1

Page S3: Lifetime distribution for QD546 and QD610

Page S4: Fluorescence recovery comparison for QD₆₁₀ under UVB and UVA illumination

Page S5: Evolution of QD₅₄₆ fluorescence

Page S6: Magnetic field effect

Page S7: Data for core QD₅₅₈

Pictures of QD solutions after addition of compound 1

QD +0.02 +0.04 +0.06 +0.08 +0.1mM

Fig. S1. Pictures of QD_{610} solutions (0.5µM) in toluene with different amounts of 1.

Fig. S2 Pictures QD_{610} solutions (0.5µM) in toluene with different amounts of 1 under UV irradiation.

Fig. S3. Left: picture QD₅₄₆ solutions (0.5μM) in toluene with different amounts of **1**. Right: the same under UV irradiation.

	Tito 10-5-1 5:17 PM
	Formatted: Font:Bold, Italic, Font color:
/	Black

Fig. S4. Lifetime distribution for each decay trace for QD_{610} in absence (a) or in presence 0.02 mM (b), 0.06 mM (c), 0.08 mM (d) and 0.1 mM (e) of **1**.

Note: IRF has been taken into account for our fittings and the decays have been zeroed. The experimental error in the lifetime measurements increases at higher concentrations of 1 (reaching a value of ca. 20%). The fluorescence decay profiles were fitted by three exponential functions: $a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2) + a_3 \exp(-t/\tau_3)$ [S.-C. Cui, T. Tachikawa, M. Fujitsuka and T. Majima, *J. Phys. Chem. C.* **2008**, 112 (49) 19625-19634]

Table 1. Emission lifetimes of QD_{610} with different amounts of 1.

[1] (mM)	a_1 (%)	τ_1 (ns)	a_2 (%)	τ_2 (ns)	$a_3(\%)$	$\tau_3(ns)$	$< \tau > (ns)$
QD ₆₁₀	24	2.12	68.5	12.4	7.6	39.35	11.9
0.02	39.6	2.93	54	11.35	6.6	36	9.6
0.04	65	2.7	28	5.8	7	21.45	4.9
0.08	73	0.8	24	5.34	3	22.8	2.5
0.1	80	1.035	19	5.889	1.18	26.35	2.25

The average lifetime has been obtained using the following equation: $\langle \tau \rangle = \frac{\sum a_i \tau_i}{100}$;

where $\langle \tau \rangle$ is the average lifetime, a_1 is the preexponential factor and τ_i is the lifetime. M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, and G. Rumbles. J. Phys. Chem. B, 2003, 107(41), 11346-11352; S.-C. Cui, T. Tachikawa, M. Fujitsuka and T. Majima, J. Phys. Chem. C. 2008, 112 (49) 19625-19634.

Fluorescence recovery comparison for QD₆₁₀ under UVB and UVA illumination

Fig. S5. Comparative fluorescence recovery using UVA (blue) and visible (red) lamps for QD_{610} after a single cycle of addition and recovery.

Fig. S6. Kinetics of the fluorescence recovery during the first irradiation with UVA light of QD_{610} under nitrogen (filled circles) and under air (open circles).

Fig. S7. Bottom: Evolution of QD_{546} (0.5 μ M) in toluene fluorescence with different concentrations of **1** after the first addition **E**, first irradiation **D**, second addition **E**, second irradiation **Z** and third addition **E**. Top: detail for QD_{546} with 0.03 mM of **1**. Irradiated with UVA light.

Fig. S8. Kinetics of fluorescence recovery using a xenon lamp as irradiation source \Box and the same in presence of a magnetic field \mathbf{Z} .

Study for core-only QD558

Fig. S9. Stern–Volmer plot of a QD₅₅₈ solution (0.5 μ M) in toluene. Inset: QD₅₅₈ emission spectra ($\lambda_{ex} = 450$ nm) upon incremental additions of 1: 0.004 mM, 0.006 mM, 0.008 mM, 0.02 mM and 0.03 mM.

Fig. S10. Kinetic time profiles of QD_{558} (0.5 μ M) in toluene with different amounts of 1. Shown in a linear scale at the top and a log scale at the bottom.