The catalytic effect of water on the keto-enol tautomerism.

Pyruvate and acetylacetone: a computational challenge

Giuliano Alagona,*^{*a*} Caterina Ghio^{*a*} and Peter I. Nagy^{*b*}

^a CNR-IPCF, Molecular Modelling Lab, Via Moruzzi 1, I-56124 Pisa, Italy. Fax: +39 050 3152442; Tel: +39 050 3152450; E-mail: <u>G.Alagona@ipcf.cnr.it</u>

^b Center for Drug Design and Development and the Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, 43606-3390. Fax: 1-419-530-7946; Tel: 1-419-530-1945; E-mail: <u>pnagy@utnet.utoledo.edu</u>

Electronic Supplementary Information

Table of Content

Table S1. Basis set effects on the stability of pyruvate tautomer conformations.

Table S2. B3LYP/6-31G* relative free energy at 298 K with respect to the isolated partners for the diketo (KK) and TS structures of the dihydrated acetylacetone with the relevant TS–KK barriers.

Table S3. Reference values of E_{int}^{s} (as defined in eq. 2) for the keto-enol (KE) tautomer of acetylacetone at the various levels considered in Table 7.

Figure S1 B3LYP/6-31++G** dihydrated structures of enolpyruvate: (a) with IMHB; (b) without IMHB.

Figure S2 B3LYP/6-31++ G^{**} optimised dihydrated structures of pyruvate starting from two of the stationary points in Fig. 5: (a) keto and (b) TS.

Figure S3. MP2/aug-cc-pvdz//MP2/aug-cc-pvdz potential energy profiles for the isolated, mono- and dihydrated pyruvate optimised structures at that level. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S4. MP2/aug-cc-pvtz//MP2/aug-cc-pvdz potential energy profiles for the isolated, mono- and dihydrated pyruvate. The basis set effect is very limited at constant geometry. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S5. CCSD(T)/aug-cc-pvdz//MP2/aug-cc-pvdz potential energy profiles for the isolated, mono- and dihydrated pyruvate. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S6. MP2/CBS vs CCSD(T)/CBS potential energy profiles for the isolated (g), mono- (w) and dihydrated (2w) pyruvate tautomers at the MP2/aug-cc-pvdz optimised geometries. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S7. B3LYP/6-31G* optimised structures starting from the stationary points in Fig. 7: (a) KK, (b) and (c) KE forms.

Figure S8. (a) B3LYP/6-31G* keto-enol (KE) optimised structure of dihydrated acetylacetone with the water molecules bridged between the hydroxyl H and the

carbonyl O (-26.5/0.99); (b) best match between the optimised structure (in red) and the grid-point on the PES of Fig. 7 at -60/1.0 (in cyan).

Figure S9. (a) B3LYP/6-31G* transition state (TS) structure of dihydrated acetylacetone optimised starting from the grid point at -80/1.2 on the PES of Fig. 7. Despite located at -49.1/1.16 the structures are similar. This TS structure corresponds to a sequential mechanism, i.e. only the H₈ atom is being delivered. Subsequently H₁₇ should be shuttled as well. (b) The B3LYP/6-31G* TS optimised structure starting from -60/1.2 is consistent with the nonIMHB KE in the bottom right region of Fig. 7.

Figure S10. B3LYP/6-31G* potential energy surface of the dihydrated acetylacetone tautomerism with a number of stationary points (see text).

Figure S11 B3LYP/6-31G* KK optimised structure starting from waters located in the same region of space (structure close to the top left corner of Figs. 8 and 11).

Figure S12. B3LYP/6-31G* KE optimised structure starting from the stationary point in the upper right corner of Fig. 8.

Figure S13. B3LYP/6-31G* potential energy surface resulting from a top to bottom scan (i.e. for each O_{19} ^{...}H₈ separation, the $O_7C_5C_4C_2$ dihedral angle spans the 80 to -60° range and so on). This map is identical to that displayed in Fig. 14 (resulting from a left to right scan), but in the KE region where only the lowest minimum structure is obtained.

Figure S14. B3LYP/6-31G* optimised structure obtained moving from the KE to the KK structure (see text).

Figure S15. MP2/aug-cc-pvdz optimised structures obtained starting from the KE structure in Fig. 9: (a) front view; (b) top view.

Figure S16. Structures of the best KK tautomer in Fig. 9 optimised at several levels: (a) B3LYP/6-31G*; (b) B3LYP/6-31++G**; (c) MP2/6-31G*; (d) MP2/aug-cc-pvdz. Some geometric parameters are also reported and compared to those of the isolated KK tautomer embedded in IEF-PCM aqueous solution (displayed in Fig. S18c).

Figure S17. Structures of the KK tautomer in the top left corner of Fig. 9 optimised at two levels: (a) B3LYP/6-31G*; (b) B3LYP/6-31++G**. Some geometric parameters are also reported.

Figure S18. Optimised structures corresponding to: (a) the lowest energy KK tautomer in vacuo (B3LYP/6-31G*); (b) the lowest energy KK tautomer in water solution (IEF-PCM/B3LYP/6-31G*, 0.39 kcal/mol more stable than the (a) structure found in water solution, practically indistinguishable from that in vacuo); (c) the lowest energy KK tautomer in water solution (IEF-PCM/B3LYP/6-311++G**), used for the explicit solvent MC/FEP simulations.

	EP		KP–EP				KP	
	C-D		A-C		A-D		$A-B^b$	
B3LYP	ΔΕ	ΔG	ΔΕ	ΔG	ΔΕ	ΔG	ΔΕ	ΔG
6-31G*	-18.14	-17.03	-3.84	-5.93	-21.99	-22.97	-0.38	-1.57
6-31++G**	-16.11	-14.96	-3.48	-5.66	-19.60	-20.62	-2.35	-3.60
6-311++G**	-15.85	-14.49	-3.26	-5.55	-19.11	-20.04	-2.25	-3.57

^a ketopyruvate (KP), A and B conformers; enolpyruvate (EP), C and D conformers; relative values in kcal/mol; ^b B (corresponding to A but for the COO⁻ moiety, which is in the heavy atom plane as in C and D) is a rotational transition state at all levels.

Absolute values (E_h) are:

B3LYP		А	В	С	D
6-31G*	Е	-341.836516	-341.835903	-341.830391	-341.801477
	G(298)	-341.809471	-341.806972	-341.800016	-341.772871
6-31++G**	Е	-341.886681	-341.882938	-341.881127	-341.855450
	G(298)	-341.860213	-341.854480	-341.851195	-341.827351
6-311++G**	Е	-341.974214	-341.970627	-341.969017	-341.943753
	G(298)	-341.948065	-341.942374	-341.939218	-341.916128

PES	KK	TS	TS–KK
Fig. 7	2.00	35.89/35.87	33.89/33.87
Fig. S9	2.00	35.89	33.89
Fig. 8	0.40	20.38	19.98
Fig. 11	0.40	27.95	27.55
Fig. 9	0.16/-0.81	20.28	20.12/21.09

Table S2. B3LYP/6-31G* relative free energy at 298 K with respect to the isolated partners for the diketo (KK) and TS structures of the dihydrated acetylacetone with the relevant TS–KK barriers^a

^a kcal/mol; reference free energy (acetylacetone + w + w) = $-498.516461 \text{ E}_{h}$.

Table S3. IEF-PCM reference values of E_{int}^{s} (as defined in eq. 2) for the keto-enol (KE) tautomer of acetylacetone at the various levels considered in Table 7.

Level	$E^{s}_{int}(E_{h})$
B3LYP/6-311++G**	-345.909338
B3LYP/6-31G*//DFT ^a	-345.798472
MP2/aug-cc-pvdz//DFT	-344.868260
MP2/aug-cc-pvtz//DFT	-345.172135
CCSD(T)/aug-cc-pvdz//DFT	-344.962278
MP2/CBS//DFT	-345.300082
CCSD(T)/CBS//DFT	-345.394100
MP2/aug-cc-pvdz	-344.868692
MP2/aug-cc-pvtz//MP2 ^b	-345.170640
CCSD(T)/aug-cc-pvdz//MP2	-344.963280
MP2/CBS//MP2	-345.297776
CCSD(T)/CBS//MP2	-345.392364

^a //DFT means //B3LYP/6-311++G**, i.e. structure optimised at the B3LYP/6-311++G** level; ^b //MP2 means //MP2/aug-cc-pvdz, i.e. structure optimised at the MP2/aug-cc-pvdz level.

Figure S1. B3LYP/6-31++G** dihydrated structures of enolpyruvate: (a) with IMHB; (b) without IMHB.

Figure S2 B3LYP/6-31++G** optimised dihydrated structures of pyruvate starting from two of the stationary points in Fig. 5: (a) keto and (b) TS.

Figure S3. MP2/aug-cc-pvdz//MP2/aug-cc-pvdz potential energy profiles for the isolated, mono- and dihydrated pyruvate optimised structures at that level. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S4. MP2/aug-cc-pvtz//MP2/aug-cc-pvdz potential energy profiles for the isolated, mono- and dihydrated pyruvate. The basis set effect is very limited at constant geometry. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S5. CCSD(T)/aug-cc-pvdz//MP2/aug-cc-pvdz potential energy profiles for the isolated, mono- and dihydrated pyruvate. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S6. MP2/CBS vs CCSD(T)/CBS potential energy profiles for the isolated (g), mono- (w) and dihydrated (2w) pyruvate tautomers at the MP2/aug-cc-pvdz optimised geometries. For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

The largest difference between the two correlated methods is found on the transition state (TS) relative energies, slightly more favourable (by 1.2-1.6 kcal/mol) at the MP2 level (numbers in red ink). For the enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.

Figure S7. B3LYP/6-31G* optimised structures of dihydrated acetylacetone tautomers starting from the stationary points in Fig. 7: (a) KK, (b) and (c) KE forms.

Figure S8. (a) B3LYP/6-31G* keto-enol (KE) optimised structure of dihydrated acetylacetone with the water molecules bridged between the hydroxyl H and the carbonyl oxygen (-26.5/0.99); (b) best match between the optimised structure (in red) and the grid-point on the PES of Fig. 7 at -60/1.0 (in cyan).

Figure S9. (a) B3LYP/6-31G* transition state (TS) structure of dihydrated acetylacetone optimised starting from the grid point at -80/1.2 on the PES of Fig. 7. Despite located at -49.1/1.16 the structures are similar. This TS structure corresponds to a sequential mechanism, i.e. only the H₈ atom is being delivered. Subsequently H₁₇ should be shuttled as well. (b) The B3LYP/6-31G* TS optimised structure starting from -60/1.2 is consistent with the nonIMHB KE in the bottom right region of Fig. 7.

Figure S10. B3LYP/6-31G* potential energy surface of the dihydrated acetylacetone tautomerism with a number of stationary points (see text).

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2010

Figure S11. B3LYP/6-31G* KK optimised structure starting from waters located in the same region of space (structure close to the top left corner of Figs. 8 and 11).

Figure S12. B3LYP/6-31G* KE optimised structure starting from the stationary point in the upper right corner of Fig. 8.

Figure S13. B3LYP/6-31G* potential energy surface resulting from a top to bottom scan (i.e. for each O_{19} ^{...}H₈ separation, the $O_7C_5C_4C_2$ dihedral angle spans the 80 to -60° range and so on). This map is identical to that displayed in Fig. 8 (resulting from a left to right scan), but in the KE region where only the lowest minimum structure is obtained.

Figure S14. B3LYP/6-31G* optimised structure obtained moving from the KE to the KK structure (see text).

Figure S15. MP2/aug-cc-pvdz optimised structures obtained starting from the KE structure in Fig. 9: (a) front view; (b) top view.

	KK+2w		KK (IEF-PCM)	KK	+2w		
		B3LYP			MP2		
	6-31G*	6-31++G**	6-311++G**	6-31G*	aug-cc-pvdz		
Structure	(a)	(b)	Fig. S18c	(c)	(d)		
O ₃ CCC	80.940	101.808	98.903	89.516	89.815		
O7CCC	-8.792	13.780	-7.084	-7.823	-4.763		
O ₃ CCO ₇	56.984	92.323	72.557	63.743	66.655		

Figure S16. Structures of the best KK tautomer in Fig. 9 optimised at several levels: (a) $B3LYP/6-31G^*$; (b) $B3LYP/6-31++G^{**}$; (c) $MP2/6-31G^*$; (d) MP2/aug-cc-pvdz. Some geometric parameters are also reported and compared to those of the isolated KK tautomer embedded in IEF-PCM aqueous solution (displayed in Fig. S18c). O_3CCO_7 is the dihedral angle between the carbonyl groups

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2010

Figure S17. Structures of the KK tautomer in the top left corner of Fig. 9 optimised at two levels: (a) B3LYP/6-31G*; (b) B3LYP/6-31++G**. Some geometric parameters are also reported. O_3CCO_7 is the dihedral angle between the carbonyl groups.

	In vacuo	IEF-PCM in water			
B3LYP	6-31G*	6-31G*	6-31G*	6-311++G**	
Structure	(a)	(a)	(b)	(c)	
O ₃ CCC	88.238	89.202	101.665	98.903	
O7CCC	88.238	88.108	7.303	-7.084	
O ₃ CCO ₇	138.843	139.761	87.139	72.557	

Figure S18. Optimised structures corresponding to: (a) the lowest energy KK tautomer in vacuo (B3LYP/6-31G*); (b) the lowest energy KK tautomer in water solution (IEF-PCM/B3LYP/6-31G*, 0.39 kcal/mol more stable than the (a) structure found in water solution which is practically indistinguishable from that in vacuo); (c) the lowest energy KK tautomer in water solution (IEF-PCM/B3LYP/6-311++G**), used for the explicit solvent MC/FEP simulations. O₃CCO₇ is the dihedral angle between the carbonyl groups.