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Table S1. Basis set effects on the stability of pyruvate tautomer conformations.”

H7 IMHB
H, 0O, H @)
\ /7 N —” H
?C1_C2 - pr—— 1_02 + /C1_CZ\
HM,
" H \0\4 \C -0 Hg /C/-\O
0 ‘o ‘o
A 0,8 D @) c ©O
S)
EP KP—EP KP
C-D A-C A-D A-BP
B3LYP AE AG AE AG AE AG AE AG
6-31G* -18.14 | -17.03 | -3.84 |-593 |-21.99 | -22.97 | -0.38 |-1.57
6-31++G** | -16.11 | -14.96 | -3.48 |-5.66 |-19.60 | -20.62 | -2.35 | -3.60
6-311++G** | -15.85 | -14.49 | -3.26 |-5.55 |-19.11 | -20.04 | -2.25 |-3.57

* ketopyruvate (KP), A and B conformers; enolpyruvate (EP), C and D conformers;
relative values in kcal/mol; ® B (corresponding to A but for the COO™ moiety, which
is in the heavy atom plane as in C and D) is a rotational transition state at all levels.

Absolute values (E;) are:

B3LYP A B C D
6-31G* E —341.836516 | —341.835903 | —341.830391 | —341.801477
G(298) | —341.809471 | —341.806972 | —341.800016 | —341.772871
6-31++G** | E —341.886681 | —341.882938 | —341.881127 | —341.855450
G(298) | —341.860213 | —341.854480 | —341.851195 | -341.827351
6-311++G** | E —341.974214 | —341.970627 | —341.969017 | —341.943753
G(298) | —341.948065 | —341.942374 | -341.939218 | —341.916128
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Table S2. B3LYP/6-31G* relative free energy at 298 K with respect to the isolated
partners for the diketo (KK) and TS structures of the dihydrated acetylacetone with
the relevant TS—-KK barriers”

PES KK TS TS-KK
Fig. 7 2.00 35.89/35.87 33.89/33.87
Fig. S9 2.00 35.89 33.89

Fig. 8 0.40 20.38 19.98

Fig. 11 0.40 27.95 27.55

Fig. 9 0.16/-0.81 20.28 20.12/21.09

* kcal/mol; reference free energy (acetylacetone + w + w) =-498.516461 E,.
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Table S3. IEF-PCM reference values of E%y (as defined in eq. 2) for the keto-enol
(KE) tautomer of acetylacetone at the various levels considered in Table 7.

Level E’int (En)

B3LYP/6-311++G** —345.909338
B3LYP/6-31G*//DFT* —345.798472
MP2/aug-cc-pvdz//DFT —344.868260
MP2/aug-cc-pvtz//DFT —345.172135
CCSD(T)/aug-cc-pvdz//DFT —344.962278
MP2/CBS//DFT —345.300082
CCSD(T)/CBS//DFT —345.394100
MP2/aug-cc-pvdz —344.868692
MP2/aug-cc-pvtz//MP2° —345.170640
CCSD(T)/aug-cc-pvdz//MP2 —344.963280
MP2/CBS//MP2 —345.297776
CCSD(T)/CBS//MP2 —345.392364

* //IDFT means //B3LYP/6-311++G**, i.e. structure optimised at the B3LYP/6-
311++G** level; ® /MP2 means //MP2/aug-cc-pvdz, i.e. structure optimised at the
MP2/aug-cc-pvdz level.
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Figure S1. B3LYP/6-31++G** dihydrated structures of enolpyruvate: (a) with
IMHB; (b) without IMHB.
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Figure S2 B3LYP/6-31++G** optimised dihydrated structures of pyruvate starting
from two of the stationary points in Fig. 5: (a) keto and (b) TS.
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Figure S3. MP2/aug-cc-pvdz//MP2/aug-cc-pvdz potential energy profiles for the

isolated, mono- and dihydrated pyruvate optimised structures at that level. For the
enolpyruvate (Enol) form both the more stable intramolecularly H-bonded (IMHB)

and nonIMHB structure values are reported.
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Figure S4. MP2/aug-cc-pvtz//MP2/aug-cc-pvdz potential energy profiles for the
isolated, mono- and dihydrated pyruvate. The basis set effect is very limited at

constant geometry. For the enolpyruvate (Enol) form both the more stable
intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.
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Figure S5. CCSD(T)/aug-cc-pvdz//MP2/aug-cc-pvdz potential energy profiles for the
isolated, mono- and dihydrated pyruvate. For the enolpyruvate (Enol) form both the

more stable intramolecularly H-bonded (IMHB) and nonIMHB structure values are

reported.
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Figure S6. MP2/CBS vs CCSD(T)/CBS potential energy profiles for the isolated (g),
mono- (w) and dihydrated (2w) pyruvate tautomers at the MP2/aug-cc-pvdz

optimised geometries. For the enolpyruvate (Enol) form both the more stable
intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.
The largest difference between the two correlated methods is found on the transition
state (TS) relative energies, slightly more favourable (by 1.2-1.6 kcal/mol) at the MP2
level (numbers in red ink). For the enolpyruvate (Enol) form both the more stable
intramolecularly H-bonded (IMHB) and nonIMHB structure values are reported.
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Figure S7. B3LYP/6-31G* optimised structures of dihydrated acetylacetone tautomers starting from the stationary points in Fig. 7: (a) KK, (b)
and (c) KE forms.
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Figure S8. (a) B3LYP/6-31G* keto-enol (KE) optimised structure of dihydrated
acetylacetone with the water molecules bridged between the hydroxyl H and the
carbonyl oxygen (—26.5/0.99); (b) best match between the optimised structure (in red)
and the grid-point on the PES of Fig. 7 at —60/1.0 (in cyan).
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Figure S9. (a) B3LYP/6-31G* transition state (TS) structure of dihydrated
acetylacetone optimised starting from the grid point at —80/1.2 on the PES of Fig. 7.
Despite located at —49.1/1.16 the structures are similar. This TS structure corresponds
to a sequential mechanism, i.e. only the Hg atom is being delivered. Subsequently Hi;
should be shuttled as well. (b) The B3LYP/6-31G* TS optimised structure starting
from —60/1.2 is consistent with the nonIMHB KE in the bottom right region of Fig. 7.
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Figure S10. B3LYP/6-31G* potential energy surface of the dihydrated acetylacetone
tautomerism with a number of stationary points (see text).
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Figure S11. B3LYP/6-31G* KK optimised structure starting from waters located in
the same region of space (structure close to the top left corner of Figs. 8 and 11).
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Figure S12. B3LYP/6-31G* KE optimised structure starting from the stationary point
in the upper right corner of Fig. 8.
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Figure S13. B3LYP/6-31G* potential energy surface resulting from a top to bottom
scan (i.e. for each O;9 'Hg separation, the O;CsC4C, dihedral angle spans the 80 to
—60° range and so on). This map is identical to that displayed in Fig. 8 (resulting from
a left to right scan), but in the KE region where only the lowest minimum structure is
obtained.
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Figure S14. B3LYP/6-31G* optimised structure obtained moving from the KE to the
KK structure (see text).
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Figure S15. MP2/aug-cc-pvdz optimised structures obtained starting from the KE
structure in Fig. 9: (a) front view; (b) top view.
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6-31G* 6-31++G** | 6-311++G** 6-31G* aug-cc-pvdz
Structure (a) (b) Fig. S18¢ (c) (d)
0;CCC 80.940 101.808 98.903 89.516 89.815
0,CCC —8.792 13.780 —7.084 —7.823 —4.763
0;CCO, 56.984 92.323 72.557 63.743 66.655

Figure S16. Structures of the best KK tautomer in Fig. 9 optimised at several levels: (a)
B3LYP/6-31G*; (b) B3LYP/6-31++G**; (c) MP2/6-31G*; (d) MP2/aug-cc-pvdz. Some
geometric parameters are also reported and compared to those of the isolated KK
tautomer embedded in IEF-PCM aqueous solution (displayed in Fig. S18c). O;CCO7 is
the dihedral angle between the carbonyl groups
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Figure S17. Structures of the KK tautomer in the top left corner of Fig. 9 optimised at two levels: (a) B3LYP/6-31G*; (b) B3LYP/6-31++G**.
Some geometric parameters are also reported. O3CCO5 is the dihedral angle between the carbonyl groups.
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In vacuo IEF-PCM in water
B3LYP 6-31G* 6-31G* 6-31G* 6-311++G**
Structure (a) (a) (b) (c)
0;CCC 88.238 89.202 101.665 98.903
0,CCC 88.238 88.108 7.303 —7.084
0;CCO, 138.843 139.761 87.139 72.557

Figure S18. Optimised structures corresponding to: (a) the lowest energy KK tautomer in
vacuo (B3LYP/6-31G*); (b) the lowest energy KK tautomer in water solution (IEF-
PCM/B3LYP/6-31G*, 0.39 kcal/mol more stable than the (a) structure found in water
solution which is practically indistinguishable from that in vacuo); (c) the lowest energy KK
tautomer in water solution (IEF-PCM/B3LYP/6-311++G**), used for the explicit solvent
MC/FEP simulations. O3;CCOy is the dihedral angle between the carbonyl groups.





