Supplementary material

Synthesis of the novel azoderivatives 2,4'-OH, 2,4'-OC $\mathbf{6}_{6}$ and 4-OC $\mathbf{C l}_{6}$

Synthesis of 2,4'-dihydroxy-5-methylazobenzene (2,4'-OH). 2-OH-4'-OMe (600 $\mathrm{mg}, 2.47 \mathrm{mmol}$) was placed in a round-bottomed flask under nitrogen atmosphere and the system was cooled to $-78^{\circ} \mathrm{C}$ using an external liquid nitrogen bath. Then, a 1 M solution of boron tribromide $\left(10 \mathrm{~cm}^{3}, 10.0 \mathrm{mmol}\right)$, in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added drop wise. After the addition, the mixture was allowed to reach room temperature and it was stirred under nitrogen atmosphere overnight. Afterwards, the reaction was quenched by careful pouring into ice-water and by addition of diluted sodium hydroxide until basic pH . The mixture was acidified to $\mathrm{pH}=5-6$ by the addition of diluted hydrochloric acid. The product was extracted with ethyl acetate and the combined extracts were dried over anhydrous sodium sulphate, filtered and evaporated under reduced pressure. The crude was purified by column chromatography on silica using a mixture of hexane:ethyl acetate 7:3 (v/v) as eluant to give $\mathbf{2 , 4} \mathbf{-} \mathbf{- O H}(481 \mathrm{mg}, 86 \%)$ as a dark brown solid. $v_{\text {max }}$ (ATR)/ $\mathrm{cm}^{-1} 3204(\mathrm{O}-\mathrm{H}), 2914(\mathrm{C}-\mathrm{H}), 1594(\mathrm{C}=\mathrm{C}), 1494(\mathrm{~N}=\mathrm{N}) ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz} ; d_{6^{-}}$ acetone) $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.77(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 6.88\left(1 \mathrm{H}, \mathrm{d}, J 8.4{ }^{a r} H \mathrm{C}-3\right.$ '), $7.03(2 \mathrm{H}$, dd, $J 8.7$ and 1.9, ${ }^{a r} \mathrm{H}$ C-3 and C-5), 7.18 ($1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $\left.2.1,{ }^{a r} H \mathrm{C}-4{ }^{\prime}\right), 7.67(1 \mathrm{H}, \mathrm{d}, J$ 2.1, ${ }^{a r} H$ C-6'), $7.87\left(2 \mathrm{H}, \mathrm{dd}, J 8.7\right.$ and $1.9,{ }^{a r} H \mathrm{C}-2$ and $\left.\mathrm{C}-6\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.3$ (1C, C_{3}), 118.0 (2C, $C-3$ and $C-5$), 119.5 ($1 \mathrm{C}, C-3$ '), 126.1 (2C, $C-2$ and $C-6$), 130.8 (1C, $C-1$ '), 132.7 (1C, $C-6$ '), 135.1 (1C, $C-4$ '), 138.8 (1C, $C-5$ '), 146.2 (1C, $C-1$), 152.5 (1C, $C-2$ '), 162.7 ($1 \mathrm{C}, C-4$); m / z (HRMS) $227.0824\left(\mathrm{M}-\mathrm{H}^{+} . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 228.0899); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 381\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 7433\right)$, 422 (3 984).

Synthesis of 2,4'-di-(5-hexenyloxy)-5-methylazobenzene (2,4'-OC $\mathbf{6}^{\prime}$). 2,4'-OH (493 $\mathrm{mg}, 2.15 \mathrm{mmol}$) and $\mathrm{NaH}(108 \mathrm{mg}, 4.51 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) were dissolved in anhydrous DMF $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen atmosphere. The solution was stirred and heated at $80^{\circ} \mathrm{C}$ and then 6-bromo-1-hexene ($701 \mathrm{mg}, 4.30 \mathrm{mmol}$) was added. The mixture was stirred under reflux for 6 hours. Afterwards, the reaction was cooled to room temperature, diluted with water and the product was extracted with ethyl acetate. The combined extracts were dried over anhydrous sodium sulphate, filtered and evaporated under reduced pressure. The crude was purified by column chromatography
on silica using a mixture $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane 1:1 (v / v) as eluant to give 2-OH-4'-OMe (741 $\mathrm{mg}, 88 \%)$ as a dark orange oil. $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3071(=\mathrm{C}-\mathrm{H}), 2938$ and $2867(\mathrm{C}-\mathrm{H})$, $1600(\mathrm{C}=\mathrm{C}), 1471(\mathrm{~N}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.63\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.86$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.15\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.15$ and $4.04(4 \mathrm{H}, \mathrm{t}, J 6.4$, $2 \times \mathrm{CH}_{2}-\mathrm{O}$), 4.93-5.13 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}=\mathrm{CH}$), $5.84\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}=\mathrm{CH}\right), 6.97(1 \mathrm{H}, \mathrm{d}, J$ 8.5, ${ }^{a r} H \mathrm{C}-3$ '), 6.99 ($2 \mathrm{H}, \mathrm{dd}, J 9.0$ and 2.1, ${ }^{a r} H \mathrm{C}-3$ and $\mathrm{C}-5$), 7.18 ($1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 2.1, ${ }^{a r} H$ C- 4'), 7.45 (1H, d, J 2.1, $\left.{ }^{a r} H \mathrm{C}-6 '\right), 7.90\left(2 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and 2.1, ${ }^{a r} \mathrm{H}$ C-2 and C6); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 25.2$ and $25.4\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{2}\right), 28.6$ and 28.8 ($2 \mathrm{C}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $33.4\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right.$), 68.0 and $70.0\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 114.6$ (3C, $C-3, C-5$ and $C-3$ '), 114.8 and $114.9\left(2 \mathrm{C}, C_{2}=\mathrm{CH}\right), 117.1$ ($1 \mathrm{C}, C-6$ '), 124.7 (2C, $C-2$ and $C-6$), 130.4 ($1 \mathrm{C}, C-1$ '), 132.1 ($1 \mathrm{C}, C-4$ '), 138.4 and $138.6\left(2 \mathrm{C}, \mathrm{CH}_{2}=C \mathrm{H}\right.$), 142.5 ($1 \mathrm{C}, C-5$ '), 147.4 ($1 \mathrm{C}, C-1$), 154.3 ($1 \mathrm{C}, C-2$ '), 161.4 ($1 \mathrm{C}, C-4$); m / z (HRMS) $393.2537\left(\mathrm{M}+\mathrm{H}^{+} . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 392.2464); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 351\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-}\right.$ ${ }^{1} 13$ 382), 451 (2 245).

Synthesis of 4-(5-hexenyloxy)azobenzene (4-OC $\mathbf{6}$). 4-OH (3 g, 15.1 mmol) and triphenylphosphine ($4.37 \mathrm{~g}, 16.7 \mathrm{mmol}$) were dissolved in anhydrous THF $\left(25 \mathrm{~cm}^{3}\right)$ under nitrogen atmosphere. After 30 minutes, 5 -hexen-1-ol ($\left.2 \mathrm{~cm}^{3}, 16.7 \mathrm{mmol}\right)$ and DIPAD ($3.3 \mathrm{~cm}^{3}, 16.7 \mathrm{mmol}$) were added. The reaction was stirred at room temperature overnight. Afterwards, the solvent was removed under reduced pressure and the crude was purified by column chromatography on silica using a mixture $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane 9:1 $(\mathrm{v} / \mathrm{v})$ as eluant to give $\mathbf{4 - 0 C} 6(4.21 \mathrm{~g}, 99 \%)$ as an orange solid. $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3069$ (=C-H), 2939 and $2866(\mathrm{C}-\mathrm{H}), 1601(\mathrm{C}=\mathrm{C}), 1468(\mathrm{~N}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.83(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2}-\mathrm{O}\right)$, 4.97-5.07 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{C} H\right), 6.98\left(2 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and $2.0,{ }^{a r} H$ $\mathrm{C}-3$ and $\mathrm{C}-5$), $7.40-7.50\left(3 \mathrm{H}, \mathrm{m},{ }^{a r} \mathrm{H} \mathrm{C}-3^{\prime}, \mathrm{C}-4{ }^{\prime}\right.$ and $\left.\mathrm{C}-5{ }^{\prime}\right), 7.86-7.88\left(2 \mathrm{H}, \mathrm{m},{ }^{a r} \mathrm{H} \mathrm{C}-2\right.$, and C-6'), $7.91\left(2 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and $2.0,{ }^{a r} H \mathrm{C}-2$ and C-6); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.3$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.4\left(1 \mathrm{C}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 68.1\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{O}\right), 114.6(2 \mathrm{C}, C-3$, $C-5), 114.8\left(1 \mathrm{C}, \mathrm{CH}_{2}=\mathrm{CH}\right), 122.5$ (2C, C-2' and $C-6^{\prime}$), 124.7 (2C, $C-2$ and $C-6$), 129.0 (2C, C-3' and $C-5$ '), 130.3 (1C, C-4'), 138.4 ($1 \mathrm{C}, \mathrm{CH}_{2}=C \mathrm{H}$), 146.8 ($1 \mathrm{C}, C-1$), 152.7 (1C, $C-1$ '), 161.6 ($1 \mathrm{C}, C-4$); m / z (HRMS) $281.1647\left(\mathrm{M}+\mathrm{H}^{+} . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 280.1576); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 346\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 39260\right)$, 429 (1681).

Chemical shifts and coupling constants from the NMR experiments are given in ppm and Hz respectively.

Tables

Azocompound	Solvent	$\boldsymbol{T} /{ }^{\circ} \mathrm{C}$	$\boldsymbol{\tau} / \mathrm{h}$
$\mathbf{4 - O C}_{\mathbf{6}}$	Ethanol	25	70
		50	3.4
		55	1.9
		60	1.2
		Toluene	25

	Toluene	25	14
		35	4.3
		40	2.4
		45	1.3
		55	0.46
2, 4'-OC6	Ethanol	25	58
		45	5.3
		55	1.8
		65	0.66
		70	0.39
	Toluene	25	65
		40	10
		65	0.69
		70	0.41
		75	0.25
2,4,4’-OMe	Ethanol	25	10
		35	3.1
		55	0.37
		60	0.23
	Toluene	25	19
		35	5.7
		50	1.1
		55	0.66
		60	0.40

Table S1. Relaxation time for the cis isomer, τ, of the alkoxy-substituted azoderivatives
 The experimental error associated to temperature and relaxation time was of $\pm 0.1 \mathrm{~K}$ and less than 10%, respectively.

Azocompound	Solvent	$\boldsymbol{T} /{ }^{\circ} \mathrm{C}$	$\boldsymbol{\tau} / \mathrm{ms}$
4-OH	Ethanol	21	265
		30	215
		49	145
$\mathbf{2 - O H}$	Ethanol	21	102
		30	264
		49	129
		67	72
		21	649
		30	485
		49	270
		67	168
		21	6.4
		30	5.1
		49	3.3
		67	2.3
		21	31
		49	18
		67	15

Table S2. Relaxation time for the cis isomer, τ, of the hydroxy-substituted azoderivatives $\mathbf{4 - O H}, \mathbf{2 - O H}$ and $\mathbf{2 , 4 , 4} \mathbf{\prime} \mathbf{- O H}$ at different temperatures. The experimental error associated to temperature and relaxation time was of $\pm 0.1 \mathrm{~K}$ and less than 10%, respectively.

Figures

Figure S1. Transients generated by irradiation with UV-light ($\lambda=355 \mathrm{~nm}$) for azobenzenes $\mathbf{4 - O H}, \mathbf{4 - O H}-\mathbf{4}^{\prime} \mathbf{- O M e}$ and $\mathbf{4 , 4} \mathbf{-} \mathbf{- O H}$ in ethanol ([AZO] $=2 \times 10^{-5} \mathbf{M}$) at 298 K.

Figure S2. Transients generated by irradiation with UV-light ($\lambda=355 \mathrm{~nm}$) for azobenzenes $\mathbf{2 - O H}, \mathbf{2 - O H} \mathbf{4} \mathbf{'}^{\mathbf{O}} \mathbf{O M e}$ and $\mathbf{2 , 4} \mathbf{\prime} \mathbf{- O H}$ in ethanol and toluene $\left([\mathbf{A Z O}]=2 \times 10^{-5}\right.$ M) at 298 K .

Figure S3. Transients generated by irradiation with UV-light ($\lambda=355 \mathrm{~nm}$) for azobenzenes $\mathbf{2 , 4} \mathbf{- O H}$ and $\mathbf{2 , 4 , 4} \mathbf{-} \mathbf{O H}$ in ethanol and toluene $\left([\mathbf{A Z O}]=2 \times 10^{-5} \mathbf{M}\right)$ at 298 K.

