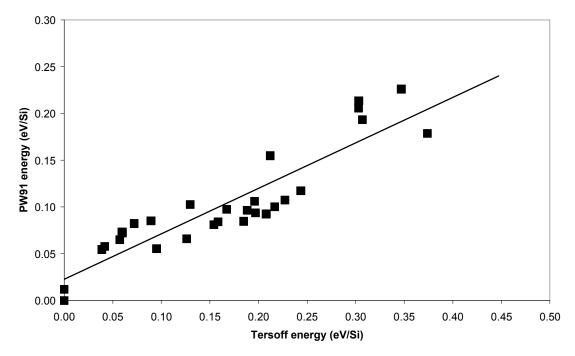
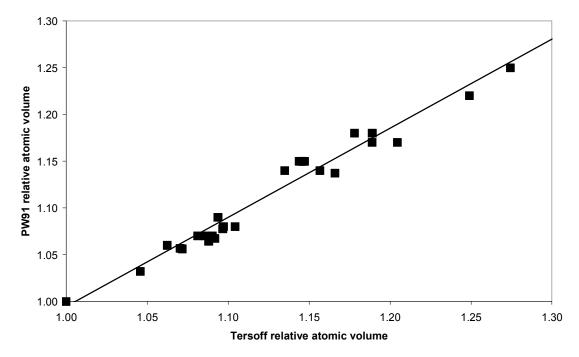
Supporting information for:


An extensive theoretical survey of low-density allotropy in silicon

M.A. Zwijnenburg^a, Kim E. Jelfs^{a, b}, S.T. Bromley^{a, c}


^a Departament de Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, E-08028 Barcelona, Spain

^bUniversity College London, Department of Chemistry, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, U.K.

^c Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

Fig. S1 Tersoff potential calculated energies with respect to diamond for a range of silicon structures plotted against their PW91 calculated counterparts. The range of structures considered included the 5-6 clathrates, the structures taken from Conesa (including *ngs*) and the structures based on known zeolites. The R² value of the linear fit obtained (line shown) is 0.82.

Fig. S2 Tersoff potential calculated relative atomic volumes with respect to diamond for a range of silicon structures plotted against their PW91 calculated counterparts. The range of structures considered is the same as for Fig. S1. The R² value of the linear fit obtained (line shown) is 0.96.