## Supplementary Material

## Comparative electrochemical and impedance studies of self-assembled

## rigid-rod molecular wires and alkanethiols on gold substrates

Francisco A. Aguiar, ${ }^{a}$ Rui Campos ${ }^{a}$, Changsheng Wang, ${ }^{a}$ Rukkiat Jitchati, ${ }^{a, b}$ Andrei S.

Batsanov, ${ }^{a}$ Martin R. Bryce, ${ }^{a}$ and Ritu Kataky* ${ }^{a}$
${ }^{a}$ Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK. Email: Ritu.kataky@durham.ac.uk
${ }^{\text {b }}$ Advanced Organic Materials and Devices Laboratory, Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani 34190, Thailand

Synthesis. Details of the equipment used and general procedures are the same as those reported previously. ${ }^{1}$

The synthesis of $\mathbf{H}$ is shown in Scheme S 1 .


Scheme S1. Reagents and conditions: i 2-methylbut-3-yn-2-ol, THF, $\mathrm{NEt}_{3}, \mathrm{Pd}(\mathrm{PPh})_{3} \mathrm{Cl}_{2}, \mathrm{CuI}$, reflux, (84\% yield); ii NaOH , toluene, reflux, ( $97 \%$ yield); iii $\mathbf{C}$ ( 2.0 equiv.), D (1.0 equiv.), $\mathrm{NEt}_{3}, \mathrm{Pd}(\mathrm{PPh})_{3} \mathrm{Cl}_{2}, \mathrm{CuI}, 50^{\circ} \mathrm{C},(91 \%$ yield); iv NaOH , toluene, reflux, ( $82 \%$ yield); v $\mathbf{F}, \mathbf{G}$, $\mathrm{NEt}_{3}, \mathrm{Pd}(\mathrm{PPh})_{3} \mathrm{Cl}_{2}, \mathrm{CuI}, 5{ }^{\circ} \mathrm{C}$, (73\% yield).

4-(Biphenyl-4-yl)-2-methylbut-3-yn-2-ol (B). To the clear solution of 4-bromobiphenyl A $(4.66 \mathrm{~g}, 20 \mathrm{mmol})$ and 2-methylbut-3-yn-2-ol ( $3.36 \mathrm{~g}, 40 \mathrm{mmol}$ ) in THF ( $40 \mathrm{~cm}^{3}$ ) and triethylamine $\left(80 \mathrm{~cm}^{3}\right)$ were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.85 \mathrm{~g}, 6 \% \mathrm{mmol}$ of the bromide $\mathbf{A})$ and $\mathrm{CuI}(0.30 \mathrm{~g})$. The mixture was heated to gentle reflux and stirred for 3 h . The brown suspension was cooled to r.t. then suction filtered to remove the brown precipitate. The filtrate was evaporated under vacuum to dryness yielding a dark orange solid. The solid was purified by flash column chromatography on silica eluted with a mixture of chloroform and diethyl ether ( $9: 1 \mathrm{v} / \mathrm{v}$ ), followed by recrystallisation from cyclohexane, yielding $\mathbf{B}$ as offwhite plates ( $3.97 \mathrm{~g}, 84 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$ ): $1.66(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 31.5,65.6,82.0,94.4,121.6,126.9,127.0,127.6,128.8$, 132.0, 140.2, 140.9.

4-Biphenylacetylene (C). To the solution of compound $\mathbf{B}(3.72 \mathrm{~g}, 15.71 \mathrm{mmol})$ in toluene $\left(100 \mathrm{~cm}^{3}\right)$ was added NaOH powder $(0.85 \mathrm{~g})$. The mixture was heated to reflux and stirred for 2.25 h under an Ar atmosphere. The brown mixture was dried of solvent by rotary evaporation and the residual solid was flash columned on silica eluted with hexaneschloroform (2:1 v/v). The purified product $\mathbf{C}$ was obtained as white crystals ( $2.73 \mathrm{~g}, 97 \%$ ). The analytical data were in agreement with the literature report. ${ }^{2}$

1-(4-Biphenylethynyl)-2,5-dihexyloxy-4-(3-hydroxy-3-methylbutynyl)benzene (E). To a solution of compounds $\mathbf{C}(0.356 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{D}^{1}(0.468 \mathrm{~g}, 1.0 \mathrm{mmol})$ in triethylamine $\left(30 \mathrm{~cm}^{3}\right)$ were added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(35 \mathrm{mg}, 5 \% \mathrm{mmol}$ of the iodide $\mathbf{D})$ and $\mathrm{CuI}(15 \mathrm{mg})$. The mixture was stirred at r.t. for 10 min then at $50{ }^{\circ} \mathrm{C}$ for 4 h to yield a yellow suspension. The solvent was removed by rotary evaporation and the residue was flash-columned on silica, eluted with chloroform-diethyl ether $9: 1 \mathrm{v} / \mathrm{v}$ ), followed by recrystallistion from methanolwater to yield $\mathbf{E}$ as an off-white solid ( $0.49 \mathrm{~g}, 91 \%$ ). Calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{3}: \mathrm{C}, 82.79 ; \mathrm{H}, 8.26$. Found: C, 82.59; H, 8.19. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 0.88-0.94(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{~m}, 8 \mathrm{H})$, $1.55(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.79-1.87(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 14.1,22.6,25.71,25.73,29.3,31.4,31.6,65.8,69.4,69.6,78.5$, $86.5,88.5,94.6,99.2,113.2,114.0,116.7,117.1,122.3,126.96,126.99,127.6,128.8,132.0$, 140.3, 140.9, 153.5, 153.6.

1-(4-Biphenylethynyl)-2,5-dihexyloxy-4-ethynylbenzene (F). By analogy to the synthesis of $\mathbf{C}$, compound $\mathbf{E}(0.48 \mathrm{~g}, 0.894 \mathrm{mmol})$ and NaOH powder $(0.28 \mathrm{~g})$ were refluxed in toluene $\left(30 \mathrm{~cm}^{3}\right)$ for 40 min . The crude product was purified by flash-column chromatography on silica, eluent chloroform-hexane, 9:1 v/v) and recrystallisation from chloroform-ethanol, to afford $\mathbf{F}$ as a pale-yellow solid ( $0.35 \mathrm{~g}, 82 \%$ ); m.p.: 64.2-64.9 ${ }^{\circ} \mathrm{C}$. Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{2}$ : C, 85.31; H, 8.00. Found: C, 85.29; H, 7.99. Maldi-Tof MS: m/z 478.4. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $0.90(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~m}, 8 \mathrm{H}), 1.53(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 4 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 13.99,14.01,22.58,22.63,25.6,25.7,29.2,29.3,31.5,31.6,69.7$, 80.0, 82.2, 86.5, 94.9, 122.7, 114.8, 117.0, 117.9, 122.3, 126.98, 127.0, 127.6, 128.8, 132.0, 140.4, 141.0, 153.5, 154.2.

1-(4-Biphenylethynyl)-4-[4-(2-cyanoethylsulfanyl)phenyl]ethynyl-2,5-dihexyloxybenzene $\mathbf{( H )}$. To the solution of compounds $\mathbf{F}(0.293 \mathrm{~g}, 0.612 \mathrm{mmol})$ and $\mathbf{G}(0.212 \mathrm{~g}, 0.733 \mathrm{mmol})$ in triethylamine $\left(40 \mathrm{~cm}^{3}\right)$ were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 5 \% \mathrm{mmol}$ relative to $\mathbf{F})$ and $\mathrm{CuI}(15$ mg ). The mixture was stirred at r.t. for 2 h and at $50^{\circ} \mathrm{C}$ for an additional 2 h to yield a yellow-orange suspension. The mixture was rotary evaporated to dryness and the residue was directly flash columned on silica (eluted with chloroform) to yield 1 a yellow solid ( 0.285 g , $73 \%$ ). A single crystal for X-ray analysis was obtained by recrystallisation from toluenecyclohexane mixture. Mp: 116.2-116.8 ${ }^{\circ} \mathrm{C}$. Calcd for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 80.71 ; \mathrm{H}, 7.09 ; \mathrm{N}, 2.19$. Found: C, 80.98; H, 7.11; N, 2.20. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 0.91(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{~m}, 8 \mathrm{H})$, 1.57 (m, 4H), 1.88 (m, 4H), 2.63 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.17$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.05 (dt, 4H), $7.02(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 14.03,14.06,18.23,22.63,22.67,25.76,25.79,29.35,29.38,29.86$, $31.62,31.64,69.69,69.78,86.68,87.42,93.97,95.00$, 113.66, 114.47, 116.99, 117.02, $117.06,117.75,122.38,122.82,127.02,127.66,128.84,128.88,130.46,132.02,132.33$, 133.77, 140.38, 141.03, 153.72, 153.79.

X-Ray Crystallography. The X-ray molecular structure of $\mathbf{H}$ is shown in Figure S1.

This journal is © the Owner Societies 2010


Figure S1. Molecular structure of $\mathbf{H}$ (thermal ellipsoids at $50 \%$ probability). Dihedral angles between rings: $\mathrm{i} /$ ii 5.5 , ii/iii 5.8 , iii/iv $38.9^{\circ}$. Disordered atoms have occupancies of 0.82 (solid) and 0.18 (dashed).

The X-ray diffraction experiment was carried out on a Bruker APEX 3-circle diffractometer with a ProteumM CCD area detector, using graphite-monochromated Mo- $K_{\alpha}$ radiation ( $\bar{\lambda}=0.71073 \AA$ ) and a Cryostream (Oxford Cryosystems) open-flow $\mathrm{N}_{2}$ cryostat. The structure was solved by direct methods and refined by full-matrix least squares against $F^{2}$ of all reflections, using SHELXTL software (version 6.14, Bruker AXS, Madison WI, USA, 2003). Crystal data: $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{NO}_{2} \mathrm{~S} \mathbf{H}, M=639.86, T=120 \mathrm{~K}$, triclinic, space group $P \overline{1}$ (No. 2), $a=11.567(1), \quad b=11.870(1), \quad c=13.986(2) ~ \AA, \quad \alpha=106.21(1), \quad \beta=102.50(1), \quad \gamma=94.14(1)^{\circ}$, $U=1782.2(3) \AA^{3}, Z=2, D_{\mathrm{c}}=1.192 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.13 \mathrm{~mm}^{-1}, 25344$ reflections with $2 \theta \leq 55^{\circ}, 8163$ unique, $R_{\text {int }}=0.035, R=0.042$ [6847 data with $\left.I \geq 2 \sigma(I)\right]$, $w R\left(F^{2}\right)=0.122$ (all data).

The synthesis of $\mathbf{K}$ is shown in Scheme S2.


Scheme S2. Reagents and conditions: i, I, J (1.0 equiv.), THF, $\mathrm{NEt}_{3}, \mathrm{Pd}(\mathrm{PPh})_{3} \mathrm{Cl}_{2}, \mathrm{CuI}$, reflux (K, $54 \%$ yield).

5-Iodo-1-[4-(2-cyanoethylsulfanyl)phenylethynyl]-pyridine (K) and 2,5-Bis[4-(2-cyanoethylsulfanyl)phenylethynyl]-pyridine (L). 2,5-Diiodopyridine I ( $0.67 \mathrm{~g}, 2.0 \mathrm{mmol}$ )
and compound $\mathbf{J}^{3}(0.40 \mathrm{~g}, 2.0 \mathrm{mmol})$ were dissolved in dry THF $\left(30 \mathrm{~cm}^{3}\right) . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(46$ mg ) and $\mathrm{CuI}(11 \mathrm{mg})$ were added with stirring followed by triethylamine $\left(30 \mathrm{~cm}^{3}\right)$. The mixture was stirred under an argon atmosphere at $50^{\circ} \mathrm{C}$ for 4 h . The solution was cooled to r.t., resulting in a yellow suspension which was mixed with dichloromethane then filtered through a silica pad (washed with a small amount of dichloromethane). The filtrate was concentrated and the residue was chromatographed on silica (eluent DCM), to afford compound $\mathbf{K}\left(1^{\text {st }}\right.$ band) as a pale-yellow solid ( $0.42 \mathrm{~g}, 54 \%$ ); Mp: 148-150 ${ }^{\circ} \mathrm{C}$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{IN}_{2} \mathrm{~S}: \mathrm{C}, 49.24 ; \mathrm{H}, 2.84 ; \mathrm{N}, 7.18$. Found: C, 49.44; H, 2.66; N, 7.00. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 2.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 18.5,29.6,89.1,90.1,92.8,117.9,119.6$, 121.1, 128.7, 130.1, 133.0, 135.2, 142.0, 144.7, 156.4. MS (MALDI-TOF) m/z (\%) 390.0 (100). This was followed by impure compound $\mathbf{L}$ (2 $2^{\text {nd }}$ band).

a


Figure S2 a and b. Nyquist plots for $1 \mathrm{mM} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-14-}$ in $0.1 \mathrm{M} \mathrm{KNO}_{3}$ solution using (a) DDT SAM and (b) 2 SAM electrodes. Frequency range: 1 Hz to 100 KHz at different applied potentials.

This journal is © the Owner Societies 2010


Figure S3a and b. Variation of $\mathrm{R}_{\mathrm{ct}}$ of DDT SAM and 2 SAM electrodes over a potential range.


Fig. S4a and b. Tafel plots for (A) DDT SAM and (B) 2 SAM

## References for the Supplementary Material

[^0]
[^0]:    1 C. Wang, A. S. Batsanov and M. R. Bryce, J. Org. Chem., 2006, 71, 108-116.
    2 E. B. Stephens and J. M. Tour, Macromolecules, 1993, 26, 2420-2427.
    3 C. Wang, A. S. Batsanov, M. R. Bryce and I. Sage, Org. Lett., 2004, 6, 2181-2184.

