Comparative electrochemical and impedance studies of self-assembled rigid-rod molecular wires and alkanethiols on gold substrates

Francisco A. Aguiar,^{*a*} Rui Campos^{*a*}, Changsheng Wang,^{*a*} Rukkiat Jitchati,^{*a,b*} Andrei S. Batsanov,^{*a*} Martin R. Bryce,^{*a*} and Ritu Kataky^{**a*}

^a Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK. Email: Ritu.kataky@durham.ac.uk

^b Advanced Organic Materials and Devices Laboratory, Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani 34190, Thailand

Synthesis. Details of the equipment used and general procedures are the same as those reported previously.¹

The synthesis of **H** is shown in Scheme S1.

Scheme S1. Reagents and conditions: i 2-methylbut-3-yn-2-ol, THF, NEt₃, Pd(PPh)₃Cl₂, CuI, reflux, (84% yield); ii NaOH, toluene, reflux, (97% yield); iii C (2.0 equiv.), D (1.0 equiv.), NEt₃, Pd(PPh)₃Cl₂, CuI, 50 °C, (91% yield); iv NaOH, toluene, reflux, (82% yield); v F, G, NEt₃, Pd(PPh)₃Cl₂, CuI, 50 °C, (73% yield).

4-(Biphenyl-4-yl)-2-methylbut-3-yn-2-ol (B). To the clear solution of 4-bromobiphenyl **A** (4.66 g, 20 mmol) and 2-methylbut-3-yn-2-ol (3.36 g, 40 mmol) in THF (40 cm³) and triethylamine (80 cm³) were added Pd(PPh₃)₂Cl₂ (0.85 g, 6% mmol of the bromide **A**) and CuI (0.30 g). The mixture was heated to gentle reflux and stirred for 3 h. The brown suspension was cooled to r.t. then suction filtered to remove the brown precipitate. The filtrate was evaporated under vacuum to dryness yielding a dark orange solid. The solid was purified by flash column chromatography on silica eluted with a mixture of chloroform and diethyl ether (9:1 v/v), followed by recrystallisation from cyclohexane, yielding **B** as off-white plates (3.97 g, 84%). ¹H NMR (CDCl₃, 300 MHz): 1.66 (s, 6H), 2.24 (s, 1H), 7.52 (m, 9H); ¹³C NMR (CDCl₃, 75 MHz): 31.5, 65.6, 82.0, 94.4, 121.6, 126.9, 127.0, 127.6, 128.8, 132.0, 140.2, 140.9.

4-Biphenylacetylene (C). To the solution of compound **B** (3.72 g, 15.71 mmol) in toluene (100 cm^3) was added NaOH powder (0.85 g). The mixture was heated to reflux and stirred for 2.25 h under an Ar atmosphere. The brown mixture was dried of solvent by rotary evaporation and the residual solid was flash columned on silica eluted with hexanes-chloroform (2:1 v/v). The purified product **C** was obtained as white crystals (2.73 g, 97%). The analytical data were in agreement with the literature report.²

1-(4-Biphenylethynyl)-2,5-dihexyloxy-4-(3-hydroxy-3-methylbutynyl)benzene (E). To a solution of compounds **C** (0.356 g, 2.0 mmol) and **D**¹ (0.468 g, 1.0 mmol) in triethylamine (30 cm³) were added Pd(PPh₃)₂Cl₂ (35 mg, 5% mmol of the iodide **D**) and CuI (15 mg). The mixture was stirred at r.t. for 10 min then at 50 °C for 4 h to yield a yellow suspension. The solvent was removed by rotary evaporation and the residue was flash-columned on silica, eluted with chloroform-diethyl ether 9:1 v/v), followed by recrystallistion from methanol-water to yield **E** as an off-white solid (0.49 g, 91%). Calcd for C₃₇H₄₄O₃: C, 82.79; H, 8.26. Found: C, 82.59; H, 8.19. ¹H NMR (CDCl₃, 300 MHz): 0.88-0.94 (m, 6H), 1.36 (m, 8H), 1.55 (m, 4H), 1.64 (s, 6H), 1.79-1.87 (m, 4H), 3.99 (t, *J* = 6 Hz, 2H), 4.01 (t, *J* = 6 Hz, 2H), 6.92 (s, 1H), 6.99 (s, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.59 (m, 6H). ¹³C NMR (CDCl₃, 75 MHz): 14.1, 22.6, 25.71, 25.73, 29.3, 31.4, 31.6, 65.8, 69.4, 69.6, 78.5, 86.5, 88.5, 94.6, 99.2, 113.2, 114.0, 116.7, 117.1, 122.3, 126.96, 126.99, 127.6, 128.8, 132.0, 140.3, 140.9, 153.5, 153.6.

Supplementary Material (ESI) for PCCP

This journal is © the Owner Societies 2010

1-(4-Biphenylethynyl)-2,5-dihexyloxy-4-ethynylbenzene (**F**). By analogy to the synthesis of **C**, compound **E** (0.48 g, 0.894 mmol) and NaOH powder (0.28 g) were refluxed in toluene (30 cm³) for 40 min. The crude product was purified by flash-column chromatography on silica, eluent chloroform-hexane, 9:1 v/v) and recrystallisation from chloroform-ethanol, to afford **F** as a pale-yellow solid (0.35 g, 82%); m.p.: 64.2-64.9 °C. Calcd for C₃₄H₃₈O₂: C, 85.31; H, 8.00. Found: C, 85.29; H, 7.99. Maldi-Tof MS: m/z 478.4. ¹H NMR (CDCl₃, 400 MHz): 0.90 (m, 6H), 1.35 (m, 8H), 1.53 (m, 4H), 1.83 (m, 4H), 3.35 (s, 1H), 4.01 (m, 4H), 6.99 (s, 1H), 7.01 (s, 1H), 7.37 (t, *J* = 7 Hz, 1H), 7.46 (t, *J* = 7 Hz, 2H), 7.61 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): 13.99, 14.01, 22.58, 22.63, 25.6, 25.7, 29.2, 29.3, 31.5, 31.6, 69.7, 80.0, 82.2, 86.5, 94.9, 122.7, 114.8, 117.0, 117.9, 122.3, 126.98, 127.0, 127.6, 128.8, 132.0, 140.4, 141.0, 153.5, 154.2.

1-(4-Biphenylethynyl)-4-[4-(2-cyanoethylsulfanyl)phenyl]ethynyl-2,5-dihexyloxybenzene

(H). To the solution of compounds **F** (0.293 g, 0.612 mmol) and **G** (0.212 g, 0.733 mmol) in triethylamine (40 cm³) were added Pd(PPh₃)₂Cl₂ (21 mg, 5% mmol relative to **F**) and CuI (15 mg). The mixture was stirred at r.t. for 2 h and at 50 °C for an additional 2 h to yield a yellow-orange suspension. The mixture was rotary evaporated to dryness and the residue was directly flash columned on silica (eluted with chloroform) to yield **1** a yellow solid (0.285 g, 73%). A single crystal for X-ray analysis was obtained by recrystallisation from toluene-cyclohexane mixture. Mp: 116.2-116.8 °C. Calcd for C₄₃H₄₅NO₂S: C, 80.71; H, 7.09; N, 2.19. Found: C, 80.98; H, 7.11; N, 2.20. ¹H NMR (CDCl₃, 400 MHz): 0.91 (m, 6H), 1.38 (m, 8H), 1.57 (m, 4H), 1.88 (m, 4H), 2.63 (t, *J* = 7.4 Hz, 2H), 3.17 (t, *J* = 7.4 Hz, 2H), 4.05 (dt, 4H), 7.02 (s, 1H), 7.04 (s, 1H), 7.3-7.4 (m, 3H), 7.44-7.51 (m, 4H), 7.61-7.63 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): 14.03, 14.06, 18.23, 22.63, 22.67, 25.76, 25.79, 29.35, 29.38, 29.86, 31.62, 31.64, 69.69, 69.78, 86.68, 87.42, 93.97, 95.00, 113.66, 114.47, 116.99, 117.02, 117.06, 117.75, 122.38, 122.82, 127.02, 127.66, 128.84, 128.88, 130.46, 132.02, 132.33, 133.77, 140.38, 141.03, 153.72, 153.79.

X-Ray Crystallography. The X-ray molecular structure of H is shown in Figure S1.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2010

Figure S1. Molecular structure of **H** (thermal ellipsoids at 50% probability). Dihedral angles between rings: i/ii 5.5, ii/iii 5.8, iii/iv 38.9°. Disordered atoms have occupancies of 0.82 (solid) and 0.18 (dashed).

The X-ray diffraction experiment was carried out on a Bruker APEX 3-circle diffractometer with a ProteumM CCD area detector, using graphite-monochromated Mo- K_{α} radiation $(\bar{\lambda}=0.71073 \text{ Å})$ and a Cryostream (Oxford Cryosystems) open-flow N₂ cryostat. The structure was solved by direct methods and refined by full-matrix least squares against F^2 of all reflections, using SHELXTL software (version 6.14, Bruker AXS, Madison WI, USA, 2003). *Crystal data*: C₄₃H₄₅NO₂S **H**, *M*=639.86, *T*=120 K, triclinic, space group $P\bar{1}$ (No. 2), *a*=11.567(1), *b*=11.870(1), *c*=13.986(2) Å, *α*=106.21(1), *β*=102.50(1), *γ*= 94.14(1)°, $U=1782.2(3) Å^3$, *Z*=2, $D_c=1.192$ g cm⁻³, $\mu=0.13$ mm⁻¹, 25344 reflections with $2\theta \le 55^\circ$, 8163 unique, $R_{int}=0.035$, R=0.042 [6847 data with $I\ge 2\sigma(I)$], w $R(F^2)=0.122$ (all data).

The synthesis of **K** is shown in Scheme S2.

Scheme S2. Reagents and conditions: i, I, J (1.0 equiv.), THF, NEt₃, Pd(PPh)₃Cl₂, CuI, reflux (K, 54% yield).

5-Iodo-1-[4-(2-cyanoethylsulfanyl)phenylethynyl]-pyridine (K) and **2,5-Bis[4-(2-cyanoethylsulfanyl)phenylethynyl]-pyridine** (L). 2,5-Diiodopyridine I (0.67 g, 2.0 mmol)

Supplementary Material (ESI) for PCCP

This journal is © the Owner Societies 2010

and compound **J**³ (0.40 g, 2.0 mmol) were dissolved in dry THF (30 cm³). Pd(PPh₃)₂Cl₂ (46 mg) and CuI (11 mg) were added with stirring followed by triethylamine (30 cm³). The mixture was stirred under an argon atmosphere at 50 °C for 4 h. The solution was cooled to r.t., resulting in a yellow suspension which was mixed with dichloromethane then filtered through a silica pad (washed with a small amount of dichloromethane). The filtrate was concentrated and the residue was chromatographed on silica (eluent DCM), to afford compound **K** (1st band) as a pale-yellow solid (0.42 g, 54%); Mp: 148-150 °C. Calcd for C₁₆H₁₁IN₂S: C, 49.24; H, 2.84; N, 7.18. Found: C, 49.44; H, 2.66; N, 7.00. ¹H NMR (CDCl₃, 300 MHz): δ 2.65 (t, *J* = 7.0 Hz, 2H), 3.19 (t, *J* = 7.0 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 8.00 (dd, *J* = 8.5 Hz, *J* = 1.5 Hz, 1H), 8.84 (d, *J* = 1.5 Hz, 1H), ¹³C NMR (CDCl₃, 125 MHz): δ 18.5, 29.6, 89.1, 90.1, 92.8, 117.9, 119.6, 121.1, 128.7, 130.1, 133.0, 135.2, 142.0, 144.7, 156.4. MS (MALDI-TOF) *m/z* (%) 390.0 (100). This was followed by impure compound **L** (2nd band).

Figure S2 a and **b**. Nyquist plots for 1 mM $\text{Fe}(\text{CN})_6^{3-/4-}$ in 0.1 M KNO₃ solution using (**a**) DDT SAM and (**b**) **2** SAM electrodes. Frequency range: 1 Hz to 100 KHz at different applied potentials.

Figure S3a and b. Variation of R_{ct} of DDT SAM and 2 SAM electrodes over a potential range.

Fig. S4a and b. Tafel plots for (A) DDT SAM and (B) 2 SAM

References for the Supplementary Material

- 1 C. Wang, A. S. Batsanov and M. R. Bryce, J. Org. Chem., 2006, 71, 108-116.
- 2 E. B. Stephens and J. M. Tour, *Macromolecules*, 1993, **26**, 2420-2427.
- 3 C. Wang, A. S. Batsanov, M. R. Bryce and I. Sage, *Org. Lett.*, 2004, **6**, 2181-2184.