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In section A, we describe the product-operator basis set used to expand the density ma-
trix, the rules for the evolution under the dipolar Hamiltonian, and the numerical integration
scheme used to propagate the density matrix. In section B, we describe the experimental and
simulated content of the matrices of proton spin diffusion (PSD) build-up curves. Section
C contains the full list of dipolar couplings used for the simulation.

A. LCL simulation of polarisation transfer

1. Picturing Liouville space

In the solid state, the secular rotating-frame dipolar Hamiltonian for a system of N
homonuclear spins I = 1/2 is:

H =
∑
i>j

µ0γ
2h̄

4πr3
ij
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(
1− 3 cos2 θij

) (
2IizIjz −

1

2
(Ii+Ij− + Ii−Ij+)

)
, (1)

where ~Ii and ~Ij are nuclear spin operators, rij is the internuclear vector, θij is the angle
between the internuclear vector and the static magnetic field, and γ is the gyromagnetic
ratio.

The density matrix σ that describes the spin system is considered here as a vector in
Liouville space, and is expanded using a product-operator basis set:

σ(t) =
4N∑
r=1

br(t)Br, (2)

Br = 2qr−1
N∏
i=1

Ii,r, (3)

where the product is over all spins i, Ii,r ∈ {Iiz, Ii+/
√

2, Ii−/
√

2, Ei}, and qr is the spin order
for the product operator Br, i.e., the number of single-spin operators Ii,r different from the
identity.

The time-evolution of the system under a Hamiltonian H is governed by the Liouville-von
Neumann equation:

dσ

dt
= Lσ = −i[H, σ], (4)

where L = −i[H, .] is the Liouvillian of the system. The action of the Liouvillian on any zero-
quantum basis set operator can be calculated using a small set of evolution rules, reported
in table I. These rules provide the connectivity between operators that can be used to
“picture” the zero-quantum subspace.
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TABLE I: Action of the dipolar Hamiltonian on zero-quantum product-operators. For each line,
the product LA = −i[H,A] is given for a one-spin or two-spin operator A.
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· −→ −iωD12( · +1
2( · ))
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2. Numerical integration of the Liouville-von Neumman equation of motion

The density matrix σ after an evolution during τ under a time-dependent Liouvillian L
can be written formally:

σ(τ) = Û(τ)σ(0) = T exp
(∫ τ

0
L(t)dt

)
σ(0), (5)

where Û(τ) is the time-evolution superoperator. To calculate numerically σ(τ), a first ap-
proximation is made by considering that the Liouvillian is piece-wise time-independent dur-
ing steps of duration ∆t. Under this approximation, equation 5 becomes

σ(τ) = Û(τ)σ(0) '
M−1∏
m=0

exp (L(tm)∆t)σ(0), (6)

where τ = M∆t and tm = m∆t. In order to calculate the density matrix at each step
σ(tm) = exp(L(tm−1)∆t)σ(tm−1) without storing explicitly the Liouvillian matrix and with-
out performing matrix-vector multiplication, the Suzuki-Trotter (ST) algorithm is used to
approximate the propagation over each timestep. In the ST algorithm, the Liouvillian is
split into a sum of terms for which the time-evolution can be calculated analytically, and
here a pair decomposition of the dipolar interaction was used

L =
∑
i>j

Lij, (7)

where the sum is over pairs of spins and Lij corresponds to the dipolar interaction between
spins i and j. Using the rules given in table I, the action of Lij can be calculated analytically
in four dimensional subspaces. Increasingly complex decomposition of the propagator make
it possible to obtain an increasing accuracy, and here a second-order scheme was employed

exp

∑
i>j

Lij∆t

 =

 N∏
i=1

i−1∏
j=1

exp (Lij∆t/2)

 1∏
i=N

1∏
j=i−1

exp (Lij∆t/2)

 (8)

where N is the total number of spins.
The actual implementation of this numerical integration scheme, in a code that we call

Tourbillon, can be found in the ESI. For a simulation performed in a reduced Liouville space
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X, the time evolution is formally driven by a Liouvillian LX , where all the elements that
would excite excluded coherences are set to zero. In the actual code, the evolution is simply
not implemented in the subspaces involving coherences that are excluded from the reduced
Liouville space.

B. Proton spin diffusion build-up curves

1. Experimental

Proton spin diffusion can be observed experimentally using the 2D pulse sequence in fig.
1 for a set of mixing times {τ}. In the 2D spectrum a transfer of polarisation during the
mixing time τ from spins observed at frequency ν1 to spins observed at frequency ν2 results
in a cross peak at frequency coordinates (ν1, ν2). The peak volumes as a function of the
mixing time τ , Pexp(ν1, ν2, τ), can be conveniently arranged in a M ×M matrix, where M
is the number of resolved peaks in the 1D spectrum, and are usually plotted as a M ×M
matrix of build-up curves.

Experimental proton spin diffusion data have been recorded for two powdered organic
solids; the experimental details have already been reported in detail before.1,2 β-l-aspartyl-
l-alanine has been studied at a MAS frequency of 6.25 kHz and a 1H Larmor frequency of
500 MHz, and thymol has been studied at a MAS frequency of 6.6 kHz and a 1H Larmor
frequency of 700 MHz.

2. Simulated

Under the assumption of a perfect pulse sequence, the volume of the (ν1, ν2) peak for a
mixing time τ can be written:

Psim(ν1, ν2, τ) = 〈
N2∑
j=1

Ibjz|Û(τ)|
N1∑
i=1

Iaiz〉 (9)

where the first and second summations are over groups of spins {ai}i=1,N1 and {bj}j=1,N2 that

are observed at frequency ν1 and ν2 respectively, Û(τ) is the time-evolution superoperator
for a mixing time τ . In the absence of unresolved or accidentally isochronous chemical sites,
the spins observed at frequency ν1 are equivalent, and the expression for the peak volume
can be simplified to:

Psim(ν1, ν2, τ) = N1〈
N2∑
j=1

Ibjz|Û(τ)|Ia1z〉 (10)
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FIG. 1: Pulse sequence for the 2D PSD experiment.
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where a1 is any spin belonging to the group of equivalent spins observed at frequency ν1. In
consequence, the build-up curves are simulated by performing one independent calculation
for each group of equivalent spins, with an initial density matrix that corresponds to a
single polarised spin σ(0) = Ia1z, and observables that consists of the summed polarisations
for groups of equivalent spins

∑
j〈Ibjz〉/‖I1z‖2. The resulting curves can be processed to

take into account accidentally isochronous chemical sites and unresolved peaks, by simply
summing over groups that correspond to a given peak in the 2D NMR spectra.

The explanation given above formally corresponds to the case of a single crystallite, but
it can be extended to the case of powdered sample. Using the definitions introduced by
Haeberlen, in the case of a single crystallite nuclei are equivalent for the PSD experiment if
they are magnetically equivalent, while in the case of a powdered sample nuclei are equivalent
if they are crystallographically equivalent. This property has to be taken into account to
perform the minimum number of simulations necessary to obtain a full set of build-up curves.

For the systems studied here, proton positions were taken from single crystal X-ray diffrac-
tion data available from the Cambridge Structural Database3 (entry code FUMTEM for
β-l-aspartyl-l-alanine and IPMEPL for thymol).

3. Comparison

The experimental and simulated spin diffusion build-up curves are related by an overall
normalisation factor

Pexp(ν1, ν2, τ) = ξPsim(ν1, ν2, τ), (11)

where ξ depends on many experimental contributions that are not measured. In order to
compare simulated and experimental data, ξ is determined from a least-squares fit between
the calculated and experimental peak volumes. Separate values are obtained for each initial
density matrix, i.e., for each line in the M ×M matrix of build-up curves; these additional
degrees of freedom makes it possible to account for some effects that are not included in the
simulation, such as the non-ideality of the pulse sequence.

C. List of dipolar couplings

A system of N spins involves C2
N distinct dipolar couplings. For a single primitive unit

cell, there are 1128 couplings for β-l-aspartyl-l-alanine and 3486 couplings for thymol. The
full list of couplings, calculated using the minimum image convention to enforce periodic
boundary conditions, is given in separate files.

1. β-l-aspartyl-l-alanine

See SI file fumtem dipolar.txt
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2. Thymol

See SI file ipmepl dipolar.txt
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