Pentaatomic planar tetracoordinate carbon molecules $[XCAl_3]^q$ [(X,q)=(B,-2), (C,-1),(N,0)] with C-X multiple bonding

Supporting Information.

Zhong-hua Cui, Chang-bin Shao, Si-meng Gao and Yi-hong Ding*

State Key Laboratory of Theoretical and Computational Chemistry, Institute of

Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of

China

SI1: The structures and their relative energies of the isomer and transition of $[XCAl_3]^q$; [(X, q)=(B, -2), (C, -1), (N, 0)].

SI2: Low-lying counterion-stabilized species structures of $Na^+[C_2Al_3]^-$, $Na^+[BCAl_3]^2-$, $(Na^+)_2[BCAl_3]^2-$ and $Mg^{2+}[BCAl_3]^2-$ molecules.

SI3: The details of MD simulations.

SI4: Calculated molecular properties of $[XCAl_3]^q$; [(X,q)=(B,-2), (C,-1), (N,0)] (pptC) structures.

SI1-Figure 1~3. Calculated structures and relative energies for the isomer of the [BCAl₃]²⁻, [C₂Al₃]⁻ and [NCAl₃], respectively. The parentheses and square bracket values obtained at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d) and B3LYP/6-311+G(d) levels, respectively. The energy values are in kcal/mol, bond lengths are in angstroms, bond angles in degrees.

SI1-Figure 4~6. Optimized geometries of interconversion transition states of [BCAl₃]²⁻, [C₂Al₃]⁻ and [NCAl₃] at the B3LYP/6-311+G(d) level, respectively. The parentheses obtained and square bracket values at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)and B3LYP/6-311+G(d)levels, respectively. The energy values are in kcal/mol, bond lengths are in angstroms, bond angles in degrees.

S12-Table 1~4. The structures and relative energies for low-lying isomers of Na⁺[C₂Al₃]⁻, Na⁺ [BCAl₃]²⁻, (Na⁺)₂[BCAl₃]²⁻ and Mg²⁺[BCAl₃]²⁻ at the B3LYP/6-311+G(d). Single-point calculations for the low-lying isomers at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d) level. The relative energy values (Δ E) are in kcal/mol.

SI2-Table 1.

$Na^{+}[C_2Al_3]^{-}$	B3LYP/6-311+G(d)	ΔΕ	CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)	ΔE
01	-965.832999	0.0	-963.8725942	0.0
02	-965.8316392	0.9	-963.8716098	0.6
03	-965.8320355	0.6	-963.8678769	3.0
04	-965.8281077	3.1	-963.8632199	5.9

01

A1,0,0.,2.5609065278,0.3031394279 A1,0,0.,-2.5609065278,0.3031394279 C,0,0.,0.6515396918,-0.2657966055 A1,0,0.,0.,1.8090792025 C,0,0.,-0.6515396918,-0.2657966055 Na,0,0.,0.,-2.5678904773

C,0,-0.44600442,0.65282595,0. Al,0,-2.1061999,-0.64379837,0. C,0,0.01885332,-0.59017769,0. Al,0,0.71157564,-2.43816384,0. Al,0,1.73723874,0.54650229,0. Na,0,-0.17191651,2.96228086,0.

C,0,-1.13106686,-0.14298698,0. A1,0,1.0399603,-0.2541049,0. C,0,-0.76922327,-1.36921785,0. A1,0,0.23416429,-3.103525,0. A1,0,-1.56234394,1.75366069,0. Na,0,1.37714476,2.72043898,0.

A1,0,1.19008209,-1.82253057,0.

Al,0,-0.38647229,1.90348458,0.

C,0,-0.72313675,-1.295904,0.

C,0,-0.23477685,-0.06433807,0.

Al,0,-2.45631638,-0.2267274,0.

Na,0,2.47771218,0.91271447,0.

SI2-Table 2

Na ⁺ [CBAl ₃] ^{2—}	B3LYP/6-311+G(d)	ΔΕ	CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)	ΔE
01	-952.6285527	0.0	-950.6790271	0.0
02	-952.6252952	2.0	-950.671561	4.7
03	-952.6204914	5.1	-950.6699927	5.7
04	-952.6214533	4.5	-950.6697465	5.8
05	-952.6217607	4.3	-950.6669196	7.6
06	-952.6210016	4.7	-950.6659539	8.2
07	-952.621378	4.5	-950.6656635	8.4
08	-952.6153923	8.3	-950.664556	9.1

A1,0,2.144895832,-1.0137112145,0. A1,0,-0.7626408381,-1.5767339899,0. A1,0,1.2938314552,1.8730690985,0. C,0,0.4717983674,-0.0091743653,0. B,0,-0.6820775572,0.8519812417,0. Na,0,-3.1173180394,0.4679775895,0.

C,0,-0.4669386849,-1.3532036934,0. Al,0,1.3940940679,-1.8473518338,0. Al,0,-2.3071263242,-0.6398897305,0. Al,0,-0.7346129134,2.0625603516,0. B,0,-0.1313860274,0.04178998,0. Na,0,2.266526162,1.2182448961,0.

03

C,0,0.7200165362,0.2171932223,0. A1,0,2.526024782,-0.447745479,0. A1,0,-2.7052368827,-0.2655243312,0. A1,0,-0.0814191397,-1.7406133899,0. B,0,-0.6942593042,0.3802317225,0. Na,0,0.2462593384,2.5950681653,0.

A1,0,0.3143568735,-1.7217214405,0. A1,0,2.4858727209,0.0804125254,0. A1,0,-1.169241658,1.6938259396,0. C,0,0.3415279905,0.2149441028,0. B,0,0.9207919833,1.5412900368,0. Na,0,-2.5587330102,-0.9021575341,0.

05

A1,0,1.8926337782,1.2518177298,0. C,0,-0.9589862682,-0.628295464,0. A1,0,-0.9543805901,1.4662845098,0. A1,0,-2.855266333,-0.8872428464,0. B,0,0.4091941074,-0.3210383071,0. Na,0,2.6008208858,-1.6863122021,0.

C,0,0.0762316218,1.1753906014,0.
A1,0,-1.7944548256,1.5392250283,0.
A1,0,3.1510407134,-0.3191440156,0.
A1,0,0.2693185183,-0.88323773,0.
B,0,1.4649365671,0.9898506809,0.
Na,0,-2.6322590351,-1.499319565,0.

C,0,1.2867301641,-0.7097612013,0.
Al,0,3.1174476883,-0.1357869549,0.
Al,0,-2.1049998135,-1.5177027751,0.
Al,0,0.4860380769,1.1685866939,0.
B,0,-0.0600052293,-1.0888599315,0.
Na,0,-2.4795180565,1.513102149,0.

C,0,0.6777017979,0.3130773128,0. Al,0,0.5960119421,2.2735304287,0. Al,0,-0.1114688534,-1.6252728896,0. Al,0,-2.776812814,-0.1766927293,0. B,0,-0.7611635149,0.4300412828,0. Na,0,2.6909687923,-0.9108006653,0.

SI2-Table 3

$(Na^+)_2[CBAl_3]^2$	B3LYP/6-311+G(d)	ΔΕ	CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)	ΔE
01	-1114.9116513	0.0	-1112.5312561	0.0
02	-1114.9100098	1.0	-1112.5292324	1.3
03	-1114.9033718	5.2	-1112.5233931	4.9
04	-1114.902835	5.5	-1112.521527	6.1
05	-1114.9027882	5.6	-1112.521366	6.2
06	-1114.8970464	9.2	-1112.5137537	11.0
07	-1114.9002565	7.2	-1112.5125249	11.8
08	-1114.8982815	8.4	-1112.5124858	11.8
09	-1114.8941444	11.0	-1112.5102597	13.2

01 🕨

A1,0,-1.2874121561,1.5606318141,0. A1,0,1.5980087366,1.5211731666,0. A1,0,-0.8068713555,-1.6566956012,0. C,0,0.0525267591,0.1785154474,0. B,0,1.158428817,-0.7383792992,0. Na,0,3.600673194,-0.9522261761,0. Na,0,-3.5591543252,-0.4891350616,0.

A1,0,0.,0.,-2.6512163474 A1,0,0.,-1.9950113313,-0.6354626294 A1,0,0.,1.9950113313,-0.6354626294 C,0,0.,0.,-0.6618583669 B,0,0.,0.,0.7730321236 Na,0,0.,-2.0447339544,2.3264023947 Na,0,0.,2.0447339544,2.3264023947

C,0,-0.9193134434,0.3342084875,0.

A1,0,-0.1067429135,2.1175625686,0. A1,0,-1.0960186779,-1.6946698322,0. A1,0,1.8163598376,-1.7717197788,0. B,0,0.4421108215,-0.1382330145,0. Na,0,-3.2504064019,0.3433548046,0. Na,0,2.8250981874,1.1323324148,0.

04

C,0,-1.1954310018,-0.1376073235,0.
Al,0,-2.3301381502,-1.7327641155,0.
Al,0,1.6476535831,1.8418815702,0.
Al,0,0.4999663809,-1.2999655508,0.
B,0,-0.1573401257,0.8207105245,0.
Na,0,3.3881891952,-0.635568401,0.
Na,0,-2.4093810017,1.9028242561,0.

05

C,0,0.2048008777,0.713973951,0.
A1,0,-1.5319061867,1.5356956088,0.
A1,0,2.5568292516,-1.8427667157,0.
A1,0,-0.3820154835,-1.2743883531,0.
B,0,1.4144960085,-0.0191875337,0.
Na,0,-3.3189490727,-0.9764647133,0.
Na,0,1.793726725,2.467252286,0.

06 ᄤ

A1,0,0.,0.,-1.309986408 A1,0,0.,-1.9819195414,1.3149199402

A1,0,0.,1.9819195414,1.3149199402 C,0,0.,0.,0.5918942511 B,0,0.,0.,2.0236680844 Na,0,0.,-3.1372504036,-1.399090574 Na,0,0.,3.1372504036,-1.399090574

A1,0,0.,0.,-1.8814260198 A1,0,0.,-1.9189636801,1.7260853256 A1,0,0.,1.9189636801,1.7260853256 Na,0,0.,-2.9296315361,-1.1359176144 Na,0,0.,2.9296315361,-1.1359176144 B,0,0.,0.,0.2061196176 C,0,0.,0.,1.6322056397

C,0,0.6688491827,-1.4731392006,0.
Al,0,2.5631220345,-1.2153523665,0.
Al,0,-2.7402870619,-1.0994152035,0.
Al,0,0.0550236834,0.4671121536,0.
B,0,-0.7170288501,-1.6095764957,0.
Na,0,2.7349339381,1.836849794,0.
Na,0,-2.6333407266,1.8805362987,0.

C,0,0.9910348972,0.1075948199,0.
A1,0,2.8759549535,-0.4249668327,0.
A1,0,-2.1682470689,-1.1888504528,0.
A1,0,0.4540672659,-1.8947093052,0.
B,0,-0.4282429082,0.1965624351,0.
Na,0,-2.7945548432,1.6099229378,0.
Na,0,0.9929167437,2.4260804579,0.

SI2-Table 4

$Mg^{2+}[CBAl_3]^{2-}$	B3LYP/6-311+G(d)	ΔΕ	CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)	ΔE
01	-990.3551597	1.9	-988.3924972	0.0
02	-990.3581933	0.0	-988.3889679	2.2
03	-990.349854	5.2	-988.3881677	2.7
04	-990.3495738	5.4	-988.3816949	6.8
05	-990.3446231	8.5	-988.376762	9.9
06	-990.3396081	11.7	-988.3757267	10.5
07	-990.3359297	14.0	-988.3713082	13.3
08	-990.3306183	17.0	-988.3698041	14.2

A1,0,2.0506138131,-0.9458660299,0. A1,0,-0.8041791165,-1.6847443872,0. A1,0,1.3605299246,1.8495486219,0. C,0,0.2745825511,-0.0119414555,0. B,0,-0.6838963911,1.0391811969,0. Mg,0,-2.8491615612,0.3472304137,0.

C,0,1.165654151,-0.0361909761,0.
A1,0,2.8549260523,-1.0258900068,0.
A1,0,-1.8807602312,-1.8656892943,0.
A1,0,0.5019762208,1.8014130793,0.
B,0,-0.1017539242,-0.6348967963,0.
Mg,0,-2.2943494387,0.9908319742,0.

A1,0,0.4225678703,-1.8716006916,0. A1,0,2.3743589103,0.0419397204,0. A1,0,-1.2717947072,1.9376824226,0. C,0,0.131037683,0.0972191094,0. B,0,0.7353038574,1.3907073295,0. Mg,0,-2.0568987138,-0.6893542603,0.

A1,0,2.0524782381,1.0729418515,0. C,0,-1.1234694099,-0.1512110681,0. A1,0,-0.7908924864,1.8225706244,0. A1,0,-2.4720553462,-1.5670507098,0. B,0,0.2727775147,-0.2358689118,0. Mg,0,2.1951770697,-1.7461683661,0.

C,0,-0.0236664379,0.8837775881,0. A1,0,-1.8041916366,1.6236815729,0. A1,0,3.3546801894,-0.0515426806,0. A1,0,0.2487145902,-1.1320382657,0. B,0,1.3651614041,0.8764208264,0. Mg,0,-2.6058845491,-1.1975340412,0.

C,0,0.7510561599,0.4858521408,0. Al,0,0.6636390563,2.4666204894,0. Al,0,-0.1229051592,-1.8564289707,0. Al,0,-2.7686424501,-0.1723356725,0. B,0,-0.6371505872,0.2642019301,0. Mg,0,2.4292403304,-0.8840271771,0.

C,0,0.3354489019,0.2361475116,0. Al,0,2.1508210877,-0.7779171174,0. Al,0,-3.2204068711,0.5896311828,0. Al,0,-0.3159315422,-1.8068443134,0. B,0,-1.0545786402,0.3460936847,0. Mg,0,1.7726120439,1.8997283917,0.

08

C,0,0.8153614527,0.3042124559,0. Al,0,2.5732002017,-0.5406763602,0. Al,0,-2.7430635468,-0.1619470403,0. Al,0,-0.0678298806,-1.6959458351,0. B,0,-0.6141485071,0.3742623478,0. Mg,0,0.0478656102,2.4587043419,0.

SI3-1 The details of MD simulations.

General parameters:

Max. points for each Traj. = 3500 and 4000

Total Number of Trajectories = 1 Random Number Generator Seed = 398465

Trajectory Step Size = 0.500 sqrt(amu)*bohr

Sampling parameters:

Vib Energy Sampling Option = Thermal sampling

TS Sampling direction = Forward

Vib Sampling Temperature = 300.0 K and 400.0 K

Rot Energy Sampling Option = Thermal distribution (symmetric top)

Rot Sampling Temperature = 300.0 K and 400.0 K Start point scaling criteria = 1.000D-05 Hartree

Integration parameters:

Correction Scheme = Fifth order polynomial fit

Project trans/rot in grad. = True
Project in prediction step = True
Project in correction step = True

Integration Scheme = Bulirsch-Stoer method

Integration Step Size = 2.000D-01 femtosec
Truncation Error Criteria = 1.000D-08 bohr
Energy Error Criteria = 1.000D-04 Hartree

Hessian evaluation = Full Hessian always

S13-2 Potential energy of three designed systems $[XCAl_3]^q$ (X,q)=(B,-2), (C,-1) and (N,0). (a) $[BCAl_3]^{2-}$, (b) $[C_2Al_3]^{-}$, and (c) $[NCAl_3]$ along the MD trajectory at B3LYP/6-31G(d) level, respectively. Born-Oppenheimer molecular dynamics simulation is performed for 10ps at 300K and 400K. Potential energy (in au) versus time (in ps).

SI4-Table 1 Calculated molecular properties of the [BCAl₃]²⁻ (pptC) structures.

BCAl ₃ ²⁻ , C _{2v} , ¹ A ₁	B3LYP/aug-cc-pVTZ	MP2/ aug-cc-pVTZ	CCSD(T)/ aug-cc-pVTZ
$R(C_1-B_2)$, Å	1.461	1.485	1.486
$R(C_1-Al_{3,4}), Å$	2.044	2.030	2.035
$R(C_1-Al_5)$, Å	1.917	1.938	1.939
$<$ Al ₅ C ₁ Al ₃ $^{\circ}$	105.0	103.3	103.3
-Etot, au	-790.2375416	-788.679885	-788.7317903
$\omega_1(a_1), \text{ cm}^{-1}$	1190	1209	1165
$\omega_2(a_1), \text{ cm}^{-1}$	544	535	539
$\omega_3(a_1), \text{ cm}^{-1}$	325	350	340
$\omega_4(a_1), \text{ cm}^{-1}$	158	177	162
$\omega_5(b_1), cm^{-1}$	210	202	197
$\omega_6(b_1), cm^{-1}$	122	111	112
$\omega_7(b_2), \text{ cm}^{-1}$	656	721	708
$\omega_8(b_2), cm^{-1}$	528	510	514
$\omega_9(b_2), cm^{-1}$	79	96	99

SI4-Table 2 Calculated molecular properties of the [C₂Al₃]⁻ (pptC) structures.

$C_2Al_3^-, C_{2v}, {}^1A_1$	B3LYP/aug-cc-pVTZ	MP2/ aug-cc-pVTZ	CCSD(T)/aug-cc-pVTZ
$R(C_1-C_2)$, Å	1.337	1.3527	1.359
$R(C_1-Al_{3,4}), Å$	2.107	2.0911	2.107
$R(C_1-Al_5)$, Å	1.925	1.9394	1.935
$<$ Al ₅ C ₁ Al ₃ $^{\circ}$	111.6	110.0	110.7
-Etot, au	-803.5806862	-802.0023153	-802.0580572
$\omega_1(a_1), \text{ cm}^{-1}$	1453	1454	1408
$\omega_2(a_1), \text{ cm}^{-1}$	555	547	560
$\omega_3(a_1), \text{ cm}^{-1}$	339	350	349
$\omega_4(a_1), \text{ cm}^{-1}$	168	170	174
$\omega_5(b_1), cm^{-1}$	222	224	216
$\omega_6(b_1), cm^{-1}$	121	101	105
$\omega_7(b_2)$, cm ⁻¹	672	662	666
$\omega_8(b_2), cm^{-1}$	609	643	649
$\omega_9(b_2), \text{ cm}^{-1}$	60	53	60

SI4-Table 3 Calculated molecular properties of the [NCAl₃] (pptC) structures.

NCAl ₃ , C _{2v} , ¹ A ₁	B3LYP/aug-cc-pVTZ	MP2/ aug-cc-pVTZ	CCSD(T)/ aug-cc-pVTZ
$R(C_1-N_2)$, Å	1.275	1.293	1.298
$R(C_1-Al_{3,4}), Å$	2.197	2.171	2.192
$R(C_1-Al_5)$, Å	1.986	1.988	1.976
$<$ Al ₅ C ₁ Al ₃ $^{\circ}$	116.1	114.0	116.3
-Etot, au	-820.2221039	-818.6223296	-818.678994
$\omega_1(a_1), cm^{-1}$	1549	1490	1496
$\omega_2(a_1), \text{ cm}^{-1}$	483	493	496
$\omega_3(a_1), \text{ cm}^{-1}$	315	319	329
$\omega_4(a_1), \text{ cm}^{-1}$	157	163	162
$\omega_5(b_1), cm^{-1}$	192	199	201
$\omega_6(b_1), cm^{-1}$	114	107	112
$\omega_7(b_2), cm^{-1}$	594	581	606
$\omega_8(b_2)$, cm ⁻¹	486	563	525
$\omega_9(b_2), \text{ cm}^{-1}$	47	42	37