
Electronic supplementary information for

The effect of phonon modes on the H2(v,j)/D2(v,j) -

Cu(1nn) scattering processes

Tapas Sahoo, Subhankar Sardar, and Satrajit Adhikari∗

Department of Physical Chemistry,

Indian Association for the Cultivation of Science,

Jadavpur, Kolkata -700 032, INDIA

February 13, 2011

I. The 4D⊗2D Time Dependent Discrete Variable Representation (TDDVR) method-

ology on molecule - surface scattering

As we wish to implement the TDDVR method to solve the above couple Time Dependent

Schrödinger Equation (TDSE), the newly formulated methodology for a mean - field type of

situation is briefly demonstrated in the simplest but completely generalized way although the

detailed formulations of the different versions of TDDVR approach are presented successively

elsewhere.1–15 The basic technical point of TDDVR dynamics is the movement of grid - points

(trajectories) by using “classical” equations of motion with time - independent width param-

eter3 of the primitive basis set. The form of TDSE in the adiabatic representation for the

diatom - surface interaction Hamiltonian for the i th set of molecular DOFs on a single Born -
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Oppenheimer surface can be written as the following generalized way:

ih̄
∂

∂t
Ψi({χi

k}, t) = Ĥeff
i ({χi

k}, t)Ψi({χi
k}, t), (1)

Ĥeff
i ({χi

k}, t) = Hi + 〈Ψj({χj
k}, t)|Hj + V̂0(x, y, z,X, Y, Z)|Ψj({χj

k}, t)〉

+ 〈Ψj({χj
k}, t)|V̂eff(x, y, z,X, Y, Z, t, Ts)|Ψj({χj

k}, t)〉,

i, j = 1, 2; i 6= j,

and
∫

Ψ†
i({χi

k}, t)Ψi({χi
k}, t)

pi∏

k=1

dχi
k = 1, (2)

with ({χ1
k} = x, y, z, Z) and ({χ2

k} = X, Y ) at any time t. The wavefunction [Ψi({χi
k}, t)]

for the i th set of degrees of freedom (pi) is expanded in terms of products of TDDVR basis

functions [{ψlk(χ
i
k, t)}] for the various k th modes,

Ψi({χi
k}, t) =

∑

l1l2...lpi

C i
l1l2....lpi

(t)

pi∏

k=1

ψlk(χ
i
k, t). (3)

The lk th basis for the k th mode is again expressed with DVR basis multiplied by plane wave

to represent the coordinate, χi
k, as a function of time, t,

ψlk(χ
i
k, t) = φ(χi

k, t)

Nk∑

n=0

ξ∗n(xlk)ξn(xk)

=

Nk∑

n=0

ξ∗n(xlk)Φn(χi
k, t),

φ(χi
k, t) = π1/4 exp

(
i

h̄
{Pχ̄i

k
(t)[χi

k − χ̄i
k(t)]}

)
, (4)

where harmonic oscillator eigenfunctions are the primitive basis to construct DVR functions,

ξn(xk) =

(
2ImAi

k

πh̄

)1/4
1√

n!2n
√
π

exp(−x2
k/2)Hn(xk),

xk =

√
2ImAi

k

h̄
(χi

k − χ̄i
k(t)),

xlk =

√
2ImAi

k

h̄
(χi

lk
(t) − χ̄i

k(t)). (5)

A TDDVR grid - point, χi
lk
, is determined by eqn (5) using the root, xlk , of Nk th Hermite

polynomial, HNk
(xk). Since the roots (xlks) of the polynomial are fixed values, the positions of
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the TDDVR grid - points (χi
lk
s) will change as a function of time due to the time - dependent

variables, χ̄i
k(t),

χi
lk
(t) = χ̄i

k(t) +

√
h̄

2ImAi
k

xlk . (6)

The Gauss - Hermite basis, Φn(χi
k, t), for the k th mode as introduced in eqn (4), have the

following important properties: (a) They form an orthonormal basis,
∫
dχi

kΦ
∗
m(χi

k, t)Φn(χi
k, t) = δk

mn, (7)

(b) The ground state of the G - H basis is a Gaussian Wave Packet.

The TDDVR basis functions, ψlk s, as defined in eqn (3) for the k th mode constitute an

orthogonal but not normalized set,
∫
dχi

kψ
∗
lk
(χi

k, t)ψl′
k
(χi

k, t) = δlkl′
k
Alkl′

k
, (8)

where Ak is the normalization factor.

When the molecule - surface interaction Hamiltonian [see eqn (2) in main text] and the TDDVR

representation of wavefunction [eqns (3), (4), (5)] are substituted into the TDSE [eqn (1)], the

classical path picture appears naturally along with the quantum equation of motion. The

compact form of TDDVR matrix equation for quantum motion can be obtained by employing

time - dependent variational principle16 as given below:

ih̄AĊi = Hi

t
Ci, (9)

and the matrix equation under a similarity transformation takes the following convenient form,

ih̄Ḋi(t) = A−1/2Hi

t
A−1/2Di, (10)

where Di = A1/2Ci.

The explicit expression of the differential equation (ih̄Ḋi(t) = A−1/2Hi

t
A−1/2Di) for an ampli-
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tude, di
l1l2....lpi

is,

ih̄ḋi
l1l2....lpi

=
1

2

{∑

k

Ṗχ̄i
k

√
h̄

ImAi
k

Ḡlklk

}
di

l1l2....lpi
−
{∑

k

µ( ˙̄χi
k)

2

2

}
di

l1l2l....lpi

+
∑

k

{ h̄ImAi
k

2µ

∑

l′
1
l′
2
....l′pi

F̄lkl′
k
di

l′
1
l′
2
....lp′

i

pi∏

k′ 6=k

δlk′
i
l′
k′
i

}

+ i
{∑

k

(Ṗχ̄j

k
)2

√
h̄ImAj

k

∑

m′

1
m′

2
...m′

pj

dj∗
m′

1
m′

2
...m′

pj

∑

m1m2...mpj

dj
m1m2...mpj

W̄m′

k
mk

pj∏

k′ 6=k

δmk′
j
m′

k′
j

· di
l1l2...lpi

}

+
{∑

k

µ( ˙̄χj
k)

2

2

} ∑

m1m2...mpj

|dj
m1m2...mpj

|2 · di
l1l2...lpi

+
∑

k

{ h̄ImA
j
k

2µ

∑

m′

1
m′

2
...m′

pj

dj∗
m′

1
m′

2
....m′

pj

∑

m1m2...mpj

dj
m1m2...mpj

F̄mkm′

k

pj∏

k′ 6=k

δmk′
j
m′

k′
j

· di
l1l2...lpi

}

+
∑

m1m2...mpj

|dj
m1m2...mpj

|2 · V0(χl1χl2 ...χlpi
, χm1

χm2
..χmpj

) · di
l1l2...lpi

+
∑

m1m2...mpj

|dj
m1m2...mpj

|2 · Veff (χl1χl2 ..χlpi
, χm1

χm2
..χmpj

, t, Ts) · di
l1l2...lpi

(11)
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where

Ḡlk,l′
k

=
Glk,l′

k√
Alk,lkAl′

k
,l′

k

, F̄lk,l′
k

=
Flk,l′

k√
Alk,lkAl′

k
,l′

k

, W̄lk ,l′
k

=
Wlk,l′

k√
Alk ,lkAl′

k
,l′

k

,

di
l1l2....lpi

= C i
l1l2....lpi

pi∏

k=1

(Alk,lk)
1

2 ,

Alk ,l′
k

=

Nk∑

n=0

ξ∗n(xlk)ξn(xl′
k
),

Glk,l′
k

=

Nk−1∑

n=0

ξ∗n+1(xlk)
√
n + 1ξn(xl′

k
) +

Nk∑

n=1

ξ∗n−1(xlk)
√
nξn(xl′

k
),

Flk ,l′
k

=

Nk−2∑

n=0

ξ∗n+2(xlk)
√

(n+ 1)(n+ 2)ξn(xl′
k
) +

Nk∑

n=2

ξ∗n−2(xlk)
√
n(n− 1)ξn(xl′

k
)

−
Nk∑

n=0

ξ∗n(xlk)(2n− 1)ξn(xl′
k
)

Wlk ,l′
k

=

Nk−1∑

n=0

ξ∗n+1(xlk)
√
n + 1ξn(xl′

k
) −

Nk∑

n=1

ξ∗n−1(xlk)
√
nξn(xl′

k
), (12)

The TDDVR equation of motion for quantum dynamics has the following important character-

istics: (a) The component matrices ({Ak}, {Gk}, {Fk}, {Wk}) of the TDDVR Hamiltonian

matrix [see eqn (11)] are time - independent and need to be evaluated once for all. It may be

noted that the matrices, {Ak}, {Gk} and {Fk} are symmetric hermitian, whereas the matrix,

{Wk}, is antisymmetric but becomes hermitian with its’ prefactor, i(=
√
−1); (b) Since the

matrices, {Gk}, are diagonal and associated with the “classical” variables {Ṗχ̄i
k
(t)}, the non -

linear dynamics of these “classical” quantities affects the convergence but not the final solution

of the quantum equations of motion; (c) As the off - diagonal elements of {Fk} and {Wk}
matrices couple the grid - points and dominate the quantum dynamics, any non - linear “clas-

sical” propagation of their associated parameter, {ImAi
k}, is not desirable, and hence, a time -

independent width parameters are the obvious choice; (d) The contribution of different modes

on a time - dependent amplitude (ḋi
l1l2....lpi

) can be evaluated independently, i.e., Fk and Wk

matrices couple grid - points or basis functions of the k th mode. This feature allows paral-

lelization of the algorithm, reduces computational cost remarkably and paves the possibility to

pursue relatively large dimensional calculations.

On the other hand, the classical path equations for the k th mode, those appear along with the
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quantum equation of motion, can be written as

˙̄χi
k(t) =

Pχ̄i
k
(t)

mk
(13)

Ṗχ̄i
k
(t) = −dV ({χi

k})
dχi

k

∣∣∣
χi

k
(t)=χ̄i

k
(t)

+ χi,F
k (t), (14)

where mk is either the reduced (µ) or the total (M) mass of the diatom and χ
i,F (t)
k is the

quantum force. A rigorous expression of the quantum force, χ
i,F (t)
k for the “classical” equation

of motion is derived by using Dirac - Frenkel variational principle,16 i.e., by minimizing the

following integral with respect to Ṗχ̄i
k
,

Ii =

∫
(−ih̄∂Ψ

∗
i ({χi

k}, t)
∂t

−H({Pχi
k
}, {χi

k})Ψ∗
i ({χi

k}, t))

× (ih̄
∂Ψi({χi

k}, t)
∂t

−H({Pχi
k
}, {χi

k})Ψi({χi
k}, t))

pi∏

k=1

dχi
k. (15)

The explicit expression of χi,F
k (t) thus obtained is

χi,F
k (t) =

∑

l1l2..lkl′
k
..lpi

C i∗
l1l2..lk..lpi

(t)C i
l1l2..l′

k
..lpi

(t)

×
{2(ImAi

k)
2

µ

[
S

(2)
lkl′

k

S
(1)∗

lklk

Alklk

− S
(3)
lkl′

k

]
− h̄ImAi

k

µ

[
Rlkl′

k

S
(1)∗
lklk

Alklk

− T ∗
lkl′

k

]}

/
[ ∑

l1l2..lk..lpi

C i∗
l1l2..lk..lpi

(t)C i
l1l2..lk..lpi

(t)
S

(1)∗
lklk

S
(1)
lklk

Alklk

−
∑

l1l2..lkl′
k
..lpi

C i∗
l1l2..lk..lpi

(t)C i
l1l2..l′

k
..lpi

(t)S
(2)∗

lkl′
k

]
, (16)

where

Rlkl′
k

=
∑

p

ξ∗p(xlk)ξp(xl′
k
)2p

S
(n)
lkl′

k
=

∑

pq

ξ∗p(xlk)ξq(xl′
k
)

∫
Φ∗

q(χk, t)(χk − χ̄i
k(t))

nΦp(χk, t)dχ
i
k

Tlkl′
k

=
∑

pq

ξp(xlk)ξ
∗
q (xl′

k
)2p

∫
Φ∗

p(χk, t)(χk − χ̄i
k(t))Φq(χ

i
k, t)dχ

i
k (17)
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with

∫
Φ∗

p(χ
i
k, t)(χ

i
k − χ̄i

k(t))Φq(χ
i
k, t)dχ

i
k =

1

2

√
h̄

ImAi
k

{
√
p+ 1δp+1,q +

√
pδp−1,q}

∫
Φ∗

p(χ
i
k, t)(χ

i
k − χ̄i

k(t))
2Φq(χ

i
k, t)dχ

i
k =

h̄

4ImAi
k

× {
√

(p+ 1)(p+ 2)δp+2,q

+ (2p+ 1)δp,q +
√
p(p− 1)δp−2,q}∫

Φ∗
p(χ

i
k, t)(χ

i
k − χ̄i

k(t))
3Φq(χ

i
k, t)dχ

i
k =

1

8
(

h̄

ImAi
k

)3/2 × {
√

(p+ 1)(p+ 2)(p+ 3)δp+3,q

+ 3(p+ 1)
√
p+ 1δp+1,q + 3p

√
pδp−1,q

+
√
p(p− 1)(p− 2)δp−3,q}. (18)

Matrices R, S(n), T and A are time - independent and need to be calculated once for all the

time. It is important to note that the time - dependence of χi,F
k arises from the time - dependent

coefficients {Ci
l1l2..lk..lpi

(t)} only.

II. Propagation and Projection

The initial wavefunction [eqn (18a) in the main text] can be expressed in terms of TDDVR

basis functions as given below:

Ψ1(x, y, z, Z, t0) =
∑

IJKL

C1
IJKL(t0)ψI(x)ψJ (y)ψK(z)ψL(Z),

=
1

r
gv(r)Yjmj

(θ, φ)ΦGWP (Z, t0). (19)

If we define the amplitude of the wavefunction only at the TDDVR grid points, the function

takes the following form due to orthogonality relationship of the basis functions known at the

grid points:

Ψ1(xI , yJ , zK , ZL, t0) =
C1

IJKL(t0)

ImA
Ax

IIA
y
JJA

z
KKA

Z
LL,

=
gv(rIJK)

rIJK
Yjmj

(θIJK , φIJK)ΦGWP (ZL, t0), (20)

which in turn gives the following expression for the initial amplitude of the wavefunction:

d1
IJKL(t0) = ImA

1
rIJK

gv(rIJK)Yjmj
(θIJK , φIJK)

√
Ax

IIA
y
JJA

z
KKA

Z
LL

ΦGWP (ZL, t0), (21)

where ImA =
(

h̄
2

)
(ImAxImAyImAzImAZ)−

1

4 .

7
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When we wish to calculate energy resolved state-to-state transition probabilities, we need to

project on the product of plane waves, vibrational wave functions of a Morse oscillator (gv(r))

and wave functions of spherical harmonics (Yj
′
,m

′

j
(θ, φ)),

Ψ(x, y, z, Z, t) =
∑

k′

out,v
′,j′,m′

j

C+
k′

out,v
′,j′,m′

j
(t)

1√
2π

exp[ik′outZ]
1

r
gv′ (r)Yj′ ,m

′

j
(θ, φ)

=
∑

IJKL

CIJKL(t)
∑

P

ΦP (ξx
I )Φ(ξx)

∑

Q

ΦQ(ξy
J)Φ(ξy)

×
∑

R

ΦR(ξz
K)Φ(ξz)

∑

S

ΦS(ξZ
L )Φ(ξZ) (22)

Multiplying both side by 1√
(2π)

exp[−ikoutZ]1
r
gvY

∗
j,mj

(θ, φ) in eqn (22) and then, integrating over

dξxdξydξzdξZ , we produce the simplified form of the expansion coefficient (C+
kout,v,j,mj

(t)):

C+
kout,v,j,mj

(t) =
1√
2π

∑

IJKL

CIJKL(t)
∑

PQR

Φ∗
P (ξx

I )Φ∗
Q(ξy

J)Φ∗
R(ξz

K)

×
∫∫∫

1

r
gv(r)Y

∗
j,mj

(θ, φ)ΦP (ξx)ΦQ(ξy)ΦR(ξz)dξxdξydξz

×
∑

S

Φ∗
S(ξZ

L )

∫
exp[−ikoutZ]ΦS(ξZ)dξZ (23)

Since
∫
dξkΦ∗

m(ξk)Φm(ξk) = 1, and approximately we have
∫
dξk →

∑

i

1/Ak
ii at the roots (ξk

i )

of the Hermite polynomial, we can further modify eqn (23) as:

C+
kout,vjmj

(t) =
1√
2π

(ImA)
∑

IJKL

(
dIJKL√

Ax
IIA

y
JJA

z
KKA

Z
LL

)

× 1

rIJK

gv(rIJK)Y ∗
jmj

(θIJK , φIJK) exp(−ikoutZL)

× exp

{
i

h̄
[PZ

sc
(ZL − Zc)]

}
,

(24)

Similarly, we derive the expression of the incoming flux at zero time as:

C−
kin,vjmj

(t0) =

(
2

π

)1/4

(ImA)
√

∆Z exp[i(kin − k0)Zc − ∆2
Z(kin − k0)

2]

×
1

rIJK
gv(rIJK)Yjmj

(θIJK , φIJK)
√
Ax

IIA
y
JJA

z
KK

. (25)

8
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where kin and kout indicate the incoming and outgoing wave vectors, respectively.

III. A “stochastic” treatment for the formulation of phonon energy transfer

The energy transfer from the incoming molecule to the solid is given by:

∆EPh =
∑

k

∑

nk

∑

n0

k

pn0

k
(Enk

−En0

k
)Pn0

k
→nk

, (26)

where Pn0

k
→nk

is the k th mode transition probability from quantum state n0
k to nk of a Linearly

Forced Harmonic Oscillator (LFHO) and the “stochastic” treatment20,21 of such model provides

the following form of transition probability in terms of modified Bessel function (I0):

Pn0

k
→nk

=
1

ρk
exp[−(nk + n0

k + 1)/ρk] × I0

[
2

ρk

√
(nk +

1

2
)(n0

k +
1

2
)

]
, (27)

within the harmonic approximation, the following energy difference between the two quantum

states appears as:

Enk
−En0

k
= h̄ωk(nk − n0

k), (28)

and the occupation probability, pn0

k
, in the n0

k th state for the k th mode at temperature, Ts

could be determined either by Boltzmann [Eq. (9)] or by Bose - Einstein [Eq. (10)] probability

factor.

We divide the contribution for phonon excitation (nk ≥ n0
k), ∆E+

Ph and de - excitation (nk < n0
k),

∆E−
Ph, consider Boltzmann probability (BP) factor for the initial state distribution and

substitute Eq. (9), (27) and (28) in the Eq. (26) to obtain:

∆E+
Ph =

∑

k

h̄ωkρ
−1
k (1 − zk)

∑

nk

∑

n0

k

z
n0

k

k (nk − n0
k)

× exp[−(nk + n0
k + 1)/ρk] × I0

[
2

ρk

√
(nk +

1

2
)(n0

k +
1

2
)

]
, (29)

which can be simplified to

∆E+
Ph =

∑

k

h̄ωkρ
−1
k (1 − zk)

∑

m

∑

n0

k

z
n0

k

k m exp(−m
ρk

)

× exp[−(2n0
k + 1)/ρk] × I0

[
2

ρk

√
(m+ n0

k +
1

2
)(n0

k +
1

2
)

]
,

(30)

9
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with m = nk − n0
k. The double sum in Eq. (30) can be replaced by a double integral to bring

an intermediate result:

∆E+
Ph =

∑

k

h̄ωkρ
−1
k (1 − zk)

∫ ∞

0

dm m

∫ ∞

0

dn0
k z

n0

k

k

× exp[−(2n0
k + 1 +m)/ρk] × I0

[
2

ρk

√
(m+ n0

k +
1

2
)(n0

k +
1

2
)

]
, (31)

which turns into the following expression under substitution, x = n0
k + 1

2
:

∆E+
Ph =

∑

k

h̄ωkz
− 1

2

k ρ−1
k (1 − zk)

∫ ∞

0

dm m

∫ ∞

0

dx zx
k exp[−(2x+m)/ρk] × I0

[
2

ρk

√
(m+ x)x

]

=
∑

k

h̄ωkz
− 1

2

k ρ−1
k (1 − zk)

∫ ∞

0

dm m exp(−m
ρk

)

∫ ∞

0

dx zx
k exp(−2x

ρk
) × I0

[
2

ρk

√
(m+ x)x

]
.

(32)

The last part of the above integral can be calculated using the following standard integral22

∫ ∞

0

dy exp(−αy) × I0(β
√
y2 + 2γy) =

1√
α2 − β2

× exp[γ(α−
√
α2 − β2)], (33)

as given below:

A =

∫ ∞

0

dx zx
k exp(−2x

ρk
) × I0

[
2

ρk

√
(m+ x)x

]

=

∫ ∞

0

dx exp

[
− (

2

ρk

+ h̄ωkβ)x

]
× I0

[
2

ρk

√
(m+ x)x

]

=
1√
ak

exp

[
m

2
{ 2

ρk
+ h̄ωkβ −

√
ak}
]
, (34)

and substituted back to Eq. (32) to obtain:

∆E+
Ph =

∑

k

h̄ωkz
− 1

2

k ρ−1
k

1√
a

(1)
k

(1 − zk)

∫ ∞

0

dm m exp(−m
ρk

) exp

[
m

2
{ 2

ρk
+ h̄ωkβ −

√
a

(1)
k }
]

=
∑

k

h̄ωkz
− 1

2

k ρ−1
k

1√
a

(1)
k

(1 − zk)

∫ ∞

0

dm m exp

[
m

2
{h̄ωkβ −

√
a

(1)
k }
]
. (35)

where a
(1)
k = β2h̄2ω2

k + 4βh̄ωkρ
−1
k .

The final form of phonon energy transfer for k th mode in the creation process after substituting

the standard integration22

∫ ∞

0

dy y × exp(−ay) =
1

a2
, (36)

10

Supplementary Material (ESI) for PCCP
This journal is © the Owner Societies 2011



over m with analytical simplification becomes:

∆E+
k =

4h̄ωk

ρk

√
a

(1)
k

(1 − zk)z
− 1

2

k (βh̄ωk −
√
a

(1)
k )−2 (37a)

and similarly, the expression for annihilation processes appears,

∆E−
k = − 4h̄ωk

ρk

√
a

(1)
k

(1 − zk)z
− 1

2

k (βh̄ωk +

√
a

(1)
k )−2. (37b)

Therefore, we find the total energy transfer from the incoming molecule to phonon modes as,

∆EPh = ∆E+
Ph + ∆E−

Ph =
∑

k

h̄ωkρk
sinh(∆k)

∆k

, (38)

where ∆k = 1
2
h̄ωkβ. It is quite important to note that energy transfer due to the initial

state distribution of the phonon nodes with BP factor appears to be surface temperature

independent.

When we consider the Bose - Einstein probability (BEP) factor for the initial state

distribution and substitute Eq. (10), (27) and (28) in the Eq. (26), the expression of energy

transfer for creation processes appears as:

∆E+
Ph =

∑

k

h̄ωkρ
−1
k

∑

nk

∑

n0

k

(nk − n0
k)(z

n0

k

k + z
2n0

k

k + z
3n0

k

k + z
4n0

k

k + · · ·)

× exp[−(nk + n0
k + 1)/ρk] × I0

[
2

ρk

√
(nk +

1

2
)(n0

k +
1

2
)

]
, (39)

which can be simplified to

∆E+
Ph =

∑

k

h̄ωkρ
−1
k

∑

m

m exp(−m
ρk

)
∑

n0

k

(z
n0

k

k + z
2n0

k

k + z
3n0

k

k + z
4n0

k

k + · · ·)

× exp[−(2n0
k + 1)/ρk]I0

[
2

ρk

√
(m+ n0

k +
1

2
)(n0

k +
1

2
)

]
, (40)

with m = nk − n0
k. The double sum in Eq. (40) can be replaced by a double integral to obtain

an intermediate result:

∆E+
Ph =

∑

k

h̄ωkρ
−1
k

∫ ∞

0

dm m exp(−m
ρk

)

∫ ∞

0

dn0
k (z

n0

k

k + z
2n0

k

k + z
3n0

k

k + z
4n0

k

k + · · ·),

× exp[−(2n0
k + 1)/ρk] × I0

[
2

ρk

√
(m+ n0

k +
1

2
)(n0

k +
1

2
)

]
, (41)
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which turns into the following expression under substitution, x = n0
k + 1

2
:

∆E+
Ph =

∑

k

h̄ωkρ
−1
k

∫ ∞

0

dm m exp(−m
ρk

)

∫ ∞

0

dx (z
x− 1

2

k + z2x−1
k + z

3x− 3

2

k + z4x−2
k · ··)

× exp[−2x

ρk
] × I0

[
2

ρk

√
(m+ x)x

]
, (42)

The above standard integrals22, Eq(33) and Eq(36), are substituted in Eq(42), integrated over

x and m and simplified analytically to obtain the final form of phonon energy transfer for k th

mode in the creation process as:

∆E+
k = h̄ωkρ

−1
k

∞∑

n=1

4a
(n)−

1
2

k z
−n

2

k

[
nh̄ωkβ −

√
a

(n)
k

]−2

, (43a)

and similarly, the expression for annihilation processes appears,

∆E−
k = −h̄ωkρ

−1
k

∞∑

n=1

4a
(q)−

1
2

k z
−n

2

k

[
nh̄ωkβ +

√
a

(n)
k

]−2

, (43b)

where

a
(n)
k = n2β2h̄2ω2

k + 4nβh̄ωkρ
−1
k .

Thus, the total phonon energy is expressed as:

∆EPh = ∆E+
Ph + ∆E−

Ph =
∑

k

kBTsρk

∞∑

n=1

xn
k

n
, (44)

where xk = exp(1
2
h̄ωkβ).

Thus, the energy transfer due to the inclusion of BEP factor for the initial state distribution

of the phonon modes brings the surface temperature dependence.

IV. Additional results

In Fig. 6, we display the theoretically calculated reaction probabilities of the incoming H2

molecule with initial state v = 1 and j = 0 as function of different initial kinetic energies

considering rigid surface and the surface including phonon modes at different temperatures.

These results for (a) Cu(100) surface with 300K and 1000K, (b) Cu(110) surface with 190K

and 1000K, and (c) Cu(111) surface with 120K and 925K are compared with the correspond-

ing experimentally measured sticking probabilities. The figures clearly demonstrate that the

calculated quantities lower estimate the experimental probabilities for all collisional energies
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except at lower and higher limits, and remain temperature independent. Fig. 7 depicts the

vibrational survival (v′ = 1) and de - excitation (v′ = 0) probabilities as function of initial ki-

netic energies for rigid surfaces and the surfaces [Cu(1nn)] with different temperatures. Those

figures show that the elastic/inelastic transition probabilities undergo noticeable change from

the rigid surface to the surface including phonon modes with different temperatures for various

surface planes (1nn). Fig. 8, 9 and 10 present the rovibrational elastic/inelastic transition

probabilities as function of initial kinetic energies for the copper surface with 100, 110 and 111

planes, respectively and indicate substantial difference from rigid surface to the surface with

various temperatures. It is quite reasonable to explain the temperature independent sticking

probabilities (see Fig. 6) and substantially temperature dependent transition probabilities (see

Fig. 7 - 10) in term of phonon energy transferred from the diatom to the solid as functions of

time (see Fig. 11) for different collisional energies and as functions of initial kinetic energies (see

Fig. 12) with various surface temperatures. In case of H2(v = 1, j = 0) - Cu(1nn) systems, the

amount of overall energy transferred due to the inclusion of phonon modes for specific initial

collisional energy and temperature appears enough to increase the transition probabilities but

not the sticking probabilities.
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Table I The barrier heights (Eb) and their locations (rb and Zb) are given for H2 dissociating

with its molecular axis kept parallel to the Cu(1nn) surface. The numbers in the parenthesis

are the results of Wiesenekker et al.17, Salin et al.18 and Dı́az et al.19 for Cu(100), Cu(110) and

Cu(111) surfaces, respectively.

Impact site Dissociation to Eb (eV) rb (A)

C
u

(1
0

0
)

Zb (A)

C
u

(1
1

0
)

C
u

(1
1

1
)

o o

bridge

hollow

top

bridge

top

hollow

bridge

top bridge

hollow

bridge

bridge

top

short bridge

short bridge

hollow

0.55 (0.63)

0.50 (0.48)

0.80 (0.89)

1.10 (0.72)

1.23 (1.37)

1.25

0.72 (0.63)

0.38 (0.63)

1.22 (1.23)

1.20 (1.00)

1.35 (1.43)

1.88 (2.09)

1.37

1.22

1.08 (1.03)

1.32 (1.40)

1.05 (1.05)

1.17 (1.14)

1.45 (1.40)

1.52 (1.52)

1.45

1.00

1.30 (1.17)

1.48 (1.39)
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Figure caption

Fig. 1. Top view of the (a) Cu(100), (b) Cu(110) and (c) Cu(111) surfaces consist of 133,

134, 134 atoms, respectively. First, second and third layer are indicated by circle, square and

triangle, respectively.

Fig. 2. The contour plot of EDIM - fit ground adiabatic PES for H2 interacting on bridge site

and dissociating to hollow site of (a) Cu(100), (b) Cu(110) and (c) Cu(111) surface, respectively.

Fig. 3. Average distance (〈Z(t)〉) from the centre of mass position of the H2(v=0, j=0) to the

top layer of the Cu(100) surface and bond length (〈r(t)〉) of diatom as functions of time (a)

for collisional energy 0.40 eV with higher (solid line) and lower (dashed line) number of basis

functions, whereas (b) for collisional energy 0.70 eV with ImAZ values 2.0 amu τ−1 (solid line)

and 0.1 amu τ−1 (dashed line) including higher number of basis functions only.

Fig. 4. (a) and (b) display the energy transfer (∆EPh) from H2(v = 0, j = 0) to Cu(100) and

Cu(110) surfaces , respectively as functions of time at two different temperatures.

Fig. 5. (a) and (b) display the energy transfer (∆EPh) at asymptotic time from H2(v = 0,

j = 0) to Cu(100) and Cu(110) surfaces , respectively as functions of collision energy at two

different temperatures.

Fig. 6. Calculated sticking probability(PStick(E)) for H2(v = 1, j = 0) on Cu(100), Cu(110)

and Cu(111) surfaces as functions of initial collisional energy are presented in panel (a), (b)

and (c), respectively, whereas experimental results are obtained from Ref. [23, 24].

Fig. 7. The energy resolved state - to - state transition probabilities for vibrationally inelastic,

v=1 → v′ = 0 (solid line) and elastic, v=1 → v′ = 1 (dashed line) collision as functions of

collisional energy of the diatom on Cu(100), Cu(110) and Cu(111) surfaces are presented in
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panel (a), (b) and (c), respectively.

Fig. 8. In case of Cu(100) plane, the calculated state - to - state rovibrational transition

probabilities (v=1, j=0 → v′, j′) are shown in (a) v′=0, j′=0; (b) v′=0, j′=2 ; (c) v′=0,

j′=4; (d) v′=1, j′=0; (e) v′=1, j′=2; (f) v′=1, j′=4 for rigid surface and two different surface

temperatures.

Fig. 9. In case of Cu(110) plane, the calculated state - to - state rovibrational transition

probabilities (v=1, j=0 → v′, j′) are shown in (a) v′=0, j′=0; (b) v′=0, j′=2 ; (c) v′=0,

j′=4; (d) v′=1, j′=0; (e) v′=1, j′=2; (f) v′=1, j′=4 for rigid surface and two different surface

temperatures.

Fig. 10. In case of Cu(111) plane, the calculated state - to - state rovibrational transition

probabilities (v=1, j=0 → v′, j′) are shown in (a) v′=0, j′=0; (b) v′=0, j′=2 ; (c) v′=0,

j′=4; (d) v′=1, j′=0; (e) v′=1, j′=2; (f) v′=1, j′=4 for rigid surface and two different surface

temperatures.

Fig. 11. (a), (b) and (c) display the energy transfer (∆EPh) from H2(v = 1, j = 0) to Cu(100),

Cu(110) and Cu(111) surfaces , respectively as functions of time at two different temperatures.

Fig. 12. (a), (b) and (c) display the energy transfer (∆EPh) at asymptotic time from H2(v = 1,

j = 0) to Cu(100), Cu(110) and Cu(111) surfaces , respectively as functions of collision energy

at two different temperatures.
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