Supplementary Information

1. Experimental set-up

Due to the high resistance of the thinnest films of pure CeO₂, the experimental set-up was modified (see Fig. S1) in order to avoid any parasitic contribution during the conductivity measurements. In particular, sample holders made of single crystal sapphire (with a resistance of 5.8 G Ω at 600 °C) were adopted for the measurements.

2. Substrate conductivity

The conductivity values of the bare Al_2O_3 and SiO_2 substrates (likely due to impurities) were determined. As it can be seen in

Fig. s₂, in most cases this background conductance (grey area) is negligibly small compared with the conductances of the thin films. Only under certain conditions, namely nominally pure samples, high pO_2 , low temperature and very small thickness, this is not the case. Interestingly, in tests performed at lower temperatures, we even observed a smaller conductance for few thin

Fig. S2: Temperature dependence of the conductance of nominally pure CeO_2 on Al_2O_3 at 10^{-3} bar pO_2

films on the substrate compared with the bare substrate (up to one order of magnitude difference). A possible explanation for this effect might be that the CeO₂ films behave blocking for the impurities of the substrates while this is not the case if the platinum electrodes are sputtered directly onto the substrate. Nonetheless, the pO_2 dependence and mostly important also the thickness dependence investigations were not influenced by the conductance of the substrate as these measurements were carried out at 700 °C, a temperature at which the background conductance is negligible.

3. Derivation of Equation (8) – Blocking Perpendicular Grain Boundaries

1g. S3: Geometry of the polycrystalline Ceo thin films (bricklayer model)

For simplification it is helpful to use reduced conductances Y:

$$Y = \frac{l_1}{l_2} \cdot G \tag{S1}$$

In our experimental case I_1 and I_2 have been 1 mm and 10 mm respectively. For the number of perpendicular space charge layers N_{GB}^{\perp} we get:

$$N_{GB}^{\perp} = 2\frac{l_1}{d} \tag{S2}$$

If we use the resistance R_{∞} of the epitaxial layers on Al₂O₃ we can express the resistance R^{\perp} of the polycrystalline films on SiO₂ as:

$$R^{\perp} = R_{\infty} + \Delta R_{GB} = R_{\infty} + N_{GB}^{\perp} \cdot \Delta R_{1} = R_{\infty} + N_{GB}^{\perp} \cdot \frac{\Delta Z_{1}}{l_{2} \cdot L}$$
(S3)

Here ΔR_1 (ΔZ_1) is the resistance (reduced resistance) of a single blocking SCL. ΔZ_1 can be defined as follows (λ^* = length of the space charge layer, Mott-Schottky case):

$$\Delta Z_1 = \int_0^{d/2} (\rho(x) - \rho_\infty) dx \approx \int_0^\infty (\rho(x) - \rho_\infty) dx$$
(S4)

$$\Delta Z_1 = l_2 \cdot L \cdot \Delta R_1 \tag{S5}$$

$$\Delta Z_1 = \frac{l_2 L d}{2l_1} \cdot \Delta R_{GB} = \frac{l_2 L d}{2l_1} \cdot \left(R^\perp - R_\infty \right) \tag{S6}$$

$$\sigma_{\infty} \cdot \Delta Z_1 = \frac{d}{2} \cdot \left(\frac{R^{\perp}}{R_{\infty}} - 1\right)$$
(S7)

For the reduced conductance of the polycrystalline films Y^{\perp} we then get:

$$Y^{\perp} = \frac{l_1}{l_2} \cdot \frac{1}{R^{\perp}} = Y_{\infty} - \frac{2 \cdot L \cdot \sigma_{\infty}^2 \cdot \Delta Z_1}{d + 2 \cdot \sigma_{\infty} \cdot \Delta Z_1}$$
(S8)

with
$$Y_{\infty} = \frac{l_1}{l_2} \cdot \frac{1}{R_{\infty}} = L \cdot \sigma_{\infty}$$
 (S9)

Here Y_{∞} (σ_{∞}) is the reduced conductance (conductivity) of the epitaxial films. If we combine equations (6) and (S8) we obtain equation (8).

4. Derivation of Equation (19) – Conductive Parallel Grain Boundaries

The number of parallel space charge layers N_{GB}^{\parallel} can be calculated using:

$$N_{GB}^{\parallel} = 2\frac{l_2}{d} \tag{S10}$$

In this case the conductance (reduced conductance) of polycrystalline films $G^{\parallel}(Y^{\parallel})$ is given as the sum of the epitaxial conductance $G_{\infty}(Y_{\infty})$ and the grain boundary contribution:

$$G^{\parallel} = G_{\infty} + \Delta G_{GB} = G_{\infty} + N_{GB}^{\parallel} \cdot \Delta G_{1} = G_{\infty} + N_{GB}^{\parallel} \cdot \frac{L}{l_{1}} \cdot \Delta Y_{1}$$
(S11)

$$Y^{\parallel} = \frac{l_1}{l_2} \cdot G^{\parallel} = Y_{\infty} + \frac{2L \cdot \Delta Y_1}{d}$$
(S12)

 Y_{∞} is defined according to (S9). ΔG_1 (ΔY_1) is the conductance (reduced conductance) of a single parallel SCL which is here defined as follows:

$$\Delta Y_1 = \int_0^{d/2} (\sigma(x) - \sigma_\infty) dx \approx \int_0^\infty (\sigma(x) - \sigma_\infty) dx$$
(S13)

$$\Delta Y_1 = \frac{l_1}{L} \Delta G_1 \tag{S14}$$

If equation (6) is inserted in (S12) we obtain (19).